Suppr超能文献

用于生产真核蛋白质的表达平台:基于大肠杆菌细胞和无细胞小麦胚合成、亲和与溶解性标签及克隆策略的比较

Expression platforms for producing eukaryotic proteins: a comparison of E. coli cell-based and wheat germ cell-free synthesis, affinity and solubility tags, and cloning strategies.

作者信息

Aceti David J, Bingman Craig A, Wrobel Russell L, Frederick Ronnie O, Makino Shin-Ichi, Nichols Karl W, Sahu Sarata C, Bergeman Lai F, Blommel Paul G, Cornilescu Claudia C, Gromek Katarzyna A, Seder Kory D, Hwang Soyoon, Primm John G, Sabat Grzegorz, Vojtik Frank C, Volkman Brian F, Zolnai Zsolt, Phillips George N, Markley John L, Fox Brian G

机构信息

The Center for Eukaryotic Structural Genomics, Department of Biochemistry, University of Wisconsin at Madison, 433 Babcock Dr., Madison, WI, 53706, USA.

出版信息

J Struct Funct Genomics. 2015 Jun;16(2):67-80. doi: 10.1007/s10969-015-9198-1. Epub 2015 Apr 9.

Abstract

Vectors designed for protein production in Escherichia coli and by wheat germ cell-free translation were tested using 21 well-characterized eukaryotic proteins chosen to serve as controls within the context of a structural genomics pipeline. The controls were carried through cloning, small-scale expression trials, large-scale growth or synthesis, and purification. Successfully purified proteins were also subjected to either crystallization trials or (1)H-(15)N HSQC NMR analyses. Experiments evaluated: (1) the relative efficacy of restriction/ligation and recombinational cloning systems; (2) the value of maltose-binding protein (MBP) as a solubility enhancement tag; (3) the consequences of in vivo proteolysis of the MBP fusion as an alternative to post-purification proteolysis; (4) the effect of the level of LacI repressor on the yields of protein obtained from E. coli using autoinduction; (5) the consequences of removing the His tag from proteins produced by the cell-free system; and (6) the comparative performance of E. coli cells or wheat germ cell-free translation. Optimal promoter/repressor and fusion tag configurations for each expression system are discussed.

摘要

在一个结构基因组学流程的背景下,使用21种特征明确的真核蛋白质作为对照,对设计用于在大肠杆菌中生产蛋白质以及通过小麦胚无细胞翻译的载体进行了测试。这些对照经历了克隆、小规模表达试验、大规模生长或合成以及纯化过程。成功纯化的蛋白质还进行了结晶试验或(1)H - (15)N HSQC核磁共振分析。实验评估了:(1)限制性内切酶/连接和重组克隆系统的相对功效;(2)麦芽糖结合蛋白(MBP)作为溶解度增强标签的价值;(3)MBP融合蛋白在体内的蛋白水解作为纯化后蛋白水解替代方法的后果;(4)LacI阻遏物水平对使用自诱导从大肠杆菌获得的蛋白质产量的影响;(5)从无细胞系统产生的蛋白质中去除His标签的后果;以及(6)大肠杆菌细胞或小麦胚无细胞翻译的比较性能。讨论了每个表达系统的最佳启动子/阻遏物和融合标签配置。

相似文献

2
Expression and purification of active protein kinases from wheat germ extracts.
Methods Mol Biol. 2011;779:55-63. doi: 10.1007/978-1-61779-264-9_3.
5
Performance benchmarking of four cell-free protein expression systems.
Biotechnol Bioeng. 2016 Feb;113(2):292-300. doi: 10.1002/bit.25814. Epub 2015 Oct 7.
6
Engineering of a wheat germ expression system to provide compatibility with a high throughput pET-based cloning platform.
J Struct Funct Genomics. 2010 Sep;11(3):201-9. doi: 10.1007/s10969-010-9093-8. Epub 2010 Jun 24.
7
A set of ligation-independent in vitro translation vectors for eukaryotic protein production.
BMC Biotechnol. 2008 Mar 27;8:32. doi: 10.1186/1472-6750-8-32.
9
Efficiency of cell-free protein synthesis based on a crude cell extract from Escherichia coli, wheat germ, and rabbit reticulocytes.
J Biotechnol. 2008 Jan 20;133(2):183-9. doi: 10.1016/j.jbiotec.2007.08.008. Epub 2007 Aug 8.
10
SUMO as a solubility tag and in vivo cleavage of SUMO fusion proteins with Ulp1.
Methods Mol Biol. 2014;1177:71-80. doi: 10.1007/978-1-4939-1034-2_6.

引用本文的文献

1
Utilizing a cell-free protein synthesis platform for the biosynthesis of a natural product, caffeine.
Synth Biol (Oxf). 2023 Dec 22;8(1):ysad017. doi: 10.1093/synbio/ysad017. eCollection 2023.
3
Easy Synthesis of Complex Biomolecular Assemblies: Wheat Germ Cell-Free Protein Expression in Structural Biology.
Front Mol Biosci. 2021 Mar 25;8:639587. doi: 10.3389/fmolb.2021.639587. eCollection 2021.
4
X-ray diffraction analysis and in vitro characterization of the UAM2 protein from Oryza sativa.
Acta Crystallogr F Struct Biol Commun. 2017 Apr 1;73(Pt 4):241-245. doi: 10.1107/S2053230X17004587. Epub 2017 Mar 29.
5
Use of Nanostructure-Initiator Mass Spectrometry to Deduce Selectivity of Reaction in Glycoside Hydrolases.
Front Bioeng Biotechnol. 2015 Oct 27;3:165. doi: 10.3389/fbioe.2015.00165. eCollection 2015.
6
Development of a High Throughput Platform for Screening Glycoside Hydrolases Based on Oxime-NIMS.
Front Bioeng Biotechnol. 2015 Oct 13;3:153. doi: 10.3389/fbioe.2015.00153. eCollection 2015.

本文引用的文献

3
High-throughput protein purification and quality assessment for crystallization.
Methods. 2011 Sep;55(1):12-28. doi: 10.1016/j.ymeth.2011.07.010. Epub 2011 Aug 31.
4
An overview of enzymatic reagents for the removal of affinity tags.
Protein Expr Purif. 2011 Dec;80(2):283-93. doi: 10.1016/j.pep.2011.08.005. Epub 2011 Aug 19.
5
High-throughput production of human proteins for crystallization: the SGC experience.
J Struct Biol. 2010 Oct;172(1):3-13. doi: 10.1016/j.jsb.2010.06.008. Epub 2010 Jun 10.
6
Crystal structure of an eIF4G-like protein from Danio rerio.
Proteins. 2010 May 15;78(7):1803-6. doi: 10.1002/prot.22703.
7
Cell-free protein synthesis technology in NMR high-throughput structure determination.
Methods Mol Biol. 2010;607:127-47. doi: 10.1007/978-1-60327-331-2_12.
8
9
Flexi vector cloning.
Methods Mol Biol. 2009;498:55-73. doi: 10.1007/978-1-59745-196-3_4.
10
Wheat germ cell-free expression system for protein production.
Curr Protoc Protein Sci. 2006 Jun;Chapter 5:5.18.1-5.18.18. doi: 10.1002/0471140864.ps0518s44.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验