Macé Kevin, Giudice Emmanuel, Gillet Reynald
Université de Rennes 1, CNRS UMR 6290 IGDR, équipe traduction et repliement, Campus de Beaulieu, Bâtiment 13, 35042 Rennes, France.
Université de Rennes 1, CNRS UMR 6290 IGDR, équipe traduction et repliement, Campus de Beaulieu, Bâtiment 13, 35042 Rennes, France - Institut universitaire de France
Med Sci (Paris). 2015 Mar;31(3):282-90. doi: 10.1051/medsci/20153103014. Epub 2015 Apr 8.
Protein synthesis is accomplished through a process known as translation and is carried out by the ribosome, a large macromolecular complex found in every living organism. Given the huge amount of biological data that must be deciphered, it is not uncommon for ribosomes to regularly stall during the process of translation. Any disruption of this finely tuned process will jeopardize the viability of the cell. In bacteria, the main quality-control mechanism for rescuing ribosomes that undergo arrest during translation is trans-translation, which is performed by transfer-messenger RNA (tmRNA) in association with small protein B (SmPB). However, other rescue systems have been discovered recently, revealing a far more complicated network of factors dedicated to ribosome rescue. These discoveries make it possible to consider inhibition of these pathways as a very promising target for the discovery of new antibiotics.
蛋白质合成是通过一个称为翻译的过程来完成的,并且由核糖体执行,核糖体是一种在每个活生物体中都能找到的大型大分子复合物。鉴于必须破译的生物数据量巨大,核糖体在翻译过程中经常停滞并不罕见。这个精细调节的过程的任何中断都将危及细胞的生存能力。在细菌中,拯救在翻译过程中停滞的核糖体的主要质量控制机制是反式翻译,它由转移信使RNA(tmRNA)与小蛋白B(SmPB)协同执行。然而,最近发现了其他拯救系统,揭示了一个致力于核糖体拯救的复杂得多的因子网络。这些发现使得将这些途径的抑制作为发现新抗生素的一个非常有前景的靶点成为可能。