Fourmigué Marc, Lieffrig Julien
Institut des Sciences Chimiques de Rennes, Université Rennes 1 and CNRS, Campus de Beaulieu, 35042, Rennes, France,
Top Curr Chem. 2015;359:91-113. doi: 10.1007/128_2014_604.
The electronic properties (conductivity, magnetism) of radical systems in the solid state essentially depend on (1) the extent of delocalization of the spin density in the molecule and (2) the intermolecular interactions between radicals. The halogen bond has proven very efficient in engineering such magnetic or conducting structures and recent advances along these lines are reviewed here. Three situations are considered: (1) halogenated radical species acting as halogen bond donors, as found in iodotetrathiafulvalene-based chiral conductors or bilayer systems, and in spin crossover (SCO) complexes with halogenated ligands, (2) radical species acting as halogen bond acceptors, such as neutral nitronyl species or anionic, mixed-valence dithiolene complexes, interacting with closed-shell halogen bond donors (iodoperfluoro alkanes and arenes, iodo- or bromo-pyridinium cations), and, finally, (3) charge transfer salts where both halogen bond donor and acceptor are radical species.
固态自由基体系的电子性质(导电性、磁性)主要取决于:(1)分子中自旋密度的离域程度;(2)自由基之间的分子间相互作用。事实证明,卤键在构建此类磁性或导电结构方面非常有效,本文将对此类研究的最新进展进行综述。我们考虑了三种情况:(1)卤化自由基物种作为卤键供体,如在基于碘代四硫富瓦烯的手性导体或双层体系中,以及在含有卤化配体的自旋交叉(SCO)配合物中;(2)自由基物种作为卤键受体,如中性硝酰基物种或阴离子混合价态二硫烯配合物,与闭壳层卤键供体(碘代全氟烷烃和芳烃、碘代或溴代吡啶鎓阳离子)相互作用;最后,(3)电荷转移盐,其中卤键供体和受体均为自由基物种。