Siffrin Volker, Birkenstock Jérôme, Luchtman Dirk W, Gollan René, Baumgart Jan, Niesner Raluca A, Griesbeck Oliver, Zipp Frauke
Neurology Department, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany.
Neurology Department, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany.
J Neurosci Methods. 2015 Jul 15;249:8-15. doi: 10.1016/j.jneumeth.2015.04.005. Epub 2015 Apr 10.
Irreversible axonal and neuronal damage are the correlate of disability in patients suffering from multiple sclerosis (MS). A sustained increase of cytoplasmic free [Ca(2+)] is a common upstream event of many neuronal and axonal damage processes and could represent an early and potentially reversible step.
We propose a method to specifically analyze the neurodegenerative aspects of experimental autoimmune encephalomyelitis by Förster Resonance Energy Transfer (FRET) imaging of neuronal and axonal Ca(2+) dynamics by two-photon laser scanning microscopy (TPLSM).
Using the genetically encoded Ca(2+) sensor TN-XXL expressed in neurons and their corresponding axons, we confirm the increase of cytoplasmic free [Ca(2+)] in axons and neurons of autoimmune inflammatory lesions compared to those in non-inflamed brains. We show that these relative [Ca(2+)] increases were associated with immune-neuronal interactions.
In contrast to Ca(2+)-sensitive dyes the use of a genetically encoded Ca(2+) sensor allows reliable intraaxonal free [Ca(2+)] measurements in living anesthetized mice in health and disease. This method detects early axonal damage processes in contrast to e.g. cell/axon morphology analysis, that rather detects late signs of neurodegeneration.
Thus, we describe a method to analyze and monitor early neuronal damage processes in the brain in vivo.
不可逆的轴突和神经元损伤与多发性硬化症(MS)患者的残疾相关。细胞质游离[Ca(2+)]的持续增加是许多神经元和轴突损伤过程的常见上游事件,可能代表一个早期且潜在可逆的阶段。
我们提出一种方法,通过双光子激光扫描显微镜(TPLSM)对神经元和轴突的Ca(2+)动力学进行荧光共振能量转移(FRET)成像,以特异性分析实验性自身免疫性脑脊髓炎的神经退行性方面。
利用在神经元及其相应轴突中表达的基因编码Ca(2+)传感器TN-XXL,我们证实与未发炎大脑相比,自身免疫性炎性病变的轴突和神经元中细胞质游离[Ca(2+)]增加。我们表明这些相对的[Ca(2+)]增加与免疫-神经元相互作用有关。
与Ca(2+)敏感染料不同,使用基因编码的Ca(2+)传感器可在健康和患病的活体麻醉小鼠中可靠地测量轴突内游离[Ca(2+)]。与例如细胞/轴突形态分析相比,该方法可检测早期轴突损伤过程,而细胞/轴突形态分析更侧重于检测神经退行性变的晚期迹象。
因此,我们描述了一种在体内分析和监测大脑早期神经元损伤过程的方法。