Min James K, Dunning Allison, Gransar Heidi, Achenbach Stephan, Lin Fay Y, Al-Mallah Mouaz, Budoff Matthew J, Callister Tracy Q, Chang Hyuk-Jae, Cademartiri Filippo, Maffei Erica, Chinnaiyan Kavitha, Chow Benjamin J W, D'Agostino Ralph, DeLago Augustin, Friedman John, Hadamitzky Martin, Hausleiter Joerg, Hayes Sean W, Kaufmann Philipp, Raff Gilbert L, Shaw Leslee J, Thomson Louise, Villines Todd, Cury Ricardo C, Feuchtner Gudrun, Kim Yong-Jin, Leipsic Jonathon, Marques Hugo, Berman Daniel S, Pencina Michael
Department of Radiology, Weill Cornell Medical College and the New York-Presbyterian Hospital, New York.
Department of Public Health, Weill Cornell Medical College and the New York-Presbyterian Hospital, New York.
Am J Med. 2015 Aug;128(8):871-8. doi: 10.1016/j.amjmed.2014.10.031. Epub 2015 Apr 10.
To develop a clinical cardiac risk algorithm for stable patients with suspected coronary artery disease based upon angina typicality and coronary artery disease risk factors.
Between 2004 and 2011, 14,004 adults with suspected coronary artery disease referred for cardiac imaging were followed: 1) 9093 patients for coronary computed tomography angiography (CCTA) followed for 2.0 years (CCTA-1); 2) 2132 patients for CCTA followed for 1.6 years (CCTA-2); and 3) 2779 patients for exercise myocardial perfusion scintigraphy (MPS) followed for 5.0 years. A best-fit model from CCTA-1 for prediction of death or myocardial infarction was developed, with integer values proportional to regression coefficients. Discrimination was assessed using C-statistic. The validated model was tested for estimation of the likelihood of obstructive coronary artery disease, defined as ≥50% stenosis, as compared with the method of Diamond and Forrester. Primary outcomes included all-cause mortality and nonfatal myocardial infarction. Secondary outcomes included prevalent angiographically obstructive coronary artery disease.
In CCTA-1, best-fit model discriminated individuals at risk of death or myocardial infarction (C-statistic 0.76). The integer model ranged from 3 to 13, corresponding to 3-year death risk or myocardial infarction of 0.25% to 53.8%. When applied to CCTA-2 and MPS cohorts, the model demonstrated C-statistics of 0.71 and 0.77, respectively. Both best-fit (C = 0.76; 95% confidence interval [CI], 0.746-0.771) and integer models (C = 0.71; 95% CI, 0.693-0.719) performed better than Diamond and Forrester (C = 0.64; 95% CI, 0.628-0.659) for estimating obstructive coronary artery disease.
For stable symptomatic patients with suspected coronary artery disease, we developed a history-based method for prediction of death and obstructive coronary artery disease.
基于心绞痛典型性和冠状动脉疾病风险因素,为疑似冠状动脉疾病的稳定患者开发一种临床心脏风险算法。
2004年至2011年期间,对14004例因疑似冠状动脉疾病而接受心脏成像检查的成年人进行了随访:1)9093例患者接受冠状动脉计算机断层扫描血管造影(CCTA),随访2.0年(CCTA-1);2)2132例患者接受CCTA,随访1.6年(CCTA-2);3)2779例患者接受运动心肌灌注闪烁显像(MPS),随访5.0年。利用CCTA-1数据建立了一个预测死亡或心肌梗死的最佳拟合模型,整数值与回归系数成比例。使用C统计量评估辨别力。与Diamond和Forrester方法相比,对验证后的模型进行了评估,以估计阻塞性冠状动脉疾病(定义为狭窄≥50%)的可能性。主要结局包括全因死亡率和非致命性心肌梗死。次要结局包括冠状动脉造影显示的阻塞性冠状动脉疾病患病率。
在CCTA-1中,最佳拟合模型能够辨别有死亡或心肌梗死风险的个体(C统计量为0.76)。整数模型范围为3至13,对应3年死亡风险或心肌梗死风险为0.25%至53.8%。当应用于CCTA-2和MPS队列时,该模型的C统计量分别为0.71和0.77。在估计阻塞性冠状动脉疾病方面,最佳拟合模型(C = 0.76;95%置信区间[CI],0.746 - 0.771)和整数模型(C = 0.71;95% CI,0.693 - 0.719)均比Diamond和Forrester方法(C = 0.64;95% CI,0.628 - 0.659)表现更好。
对于疑似冠状动脉疾病的稳定症状患者,我们开发了一种基于病史的方法来预测死亡和阻塞性冠状动脉疾病。