Ho Yu-Cheng, Cheng Jen-Kun, Chiou Lih-Chu
Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan.
Department of Anesthesiology, Mackay Memorial Hospital, Taipei, Taiwan.
J Physiol. 2015 Jul 1;593(13):2955-73. doi: 10.1113/JP270384. Epub 2015 May 14.
Long-lasting neuropathic pain has been attributed to elevated neuronal plasticity changes in spinal, peripheral and cortical levels. Here, we found that reduced neuronal plasticity in the ventrolateral periaqueductal grey (vlPAG), a midbrain region important for initiating descending pain inhibition, may also contribute to neuropathic pain. Forskolin- and isoproterenol (isoprenaline)-elicited EPSC potentiation was impaired in the vlPAG of a rat model of neuropathic pain induced by spinal nerve injury. Down-regulation of adenylyl cyclase-cAMP- PKA signalling, due to impaired adenylyl cyclase, but not phosphodiesterase, in glutamatergic terminals may contribute to the hypofunction of excitatory synaptic plasticity in the vlPAG of neuropathic rats and the subsequent descending pain inhibition, ultimately leading to long-lasting neuropathic pain. Our results suggest that drugs that activate adenylyl cyclase in the vlPAG have the potential for relieving neuropathic pain.
Neuropathic pain has been attributed to nerve injury-induced elevation of peripheral neuronal discharges and spinal excitatory synaptic plasticity while little is known about the contribution of neuroplasticity changes in the brainstem. Here, we examined synaptic plasticity changes in the ventrolateral (vl) periaqueductal grey (PAG), a crucial midbrain region for initiating descending pain inhibition, in spinal nerve ligation (SNL)-induced neuropathic rats. In vlPAG slices of sham-operated rats, forskolin, an adenylyl cyclase (AC) activator, produced long-lasting enhancement of EPSCs. This is a presynaptic effect since forskolin decreased the paired-pulse ratio and failure rate of EPSCs, and increased the frequency, but not the amplitude, of miniature EPSCs. Forskolin-induced EPSC potentiation was mimicked by a β-adrenergic agonist (isoproterenol (isoprenaline)), and prevented by an AC inhibitor (SQ 22536) and a cAMP-dependent protein kinase (PKA) inhibitor (H89), but not by a phosphodiesterase (PDE) inhibitor (Ro 20-1724) or an A1 -adenosine antagonist (DPCPX). Both forskolin- and isoproterenol-induced EPSC potentiation was impaired in PAG slices of SNL rats. The SNL group had lower AC, but not PDE, activity in PAG synaptosomes than the sham group. Conversely, IPSCs in vlPAG slices were not different between SNL and sham groups. Intra-vlPAG microinjection of forskolin alleviated SNL-induced mechanical allodynia in rats. These results suggest that SNL leads to inadequate descending pain inhibition resulting from impaired glutamatergic synaptic plasticity mediated by the AC-cAMP-PKA signalling cascade, possibly due to AC down-regulation in the PAG, leading to long-term neuropathic pain.
持续性神经性疼痛被认为与脊髓、外周和皮层水平上神经元可塑性变化增强有关。在此,我们发现中脑腹外侧导水管周围灰质(vlPAG)神经元可塑性降低也可能导致神经性疼痛,vlPAG是启动下行性疼痛抑制的重要脑区。在脊髓神经损伤诱导的神经性疼痛大鼠模型的vlPAG中,福斯可林和异丙肾上腺素引发的兴奋性突触后电流(EPSC)增强受损。由于谷氨酸能终末腺苷酸环化酶受损而非磷酸二酯酶受损导致腺苷酸环化酶 - cAMP - 蛋白激酶A(PKA)信号通路下调,可能导致神经性疼痛大鼠vlPAG中兴奋性突触可塑性功能减退以及随后的下行性疼痛抑制,最终导致持续性神经性疼痛。我们的结果表明,激活vlPAG中腺苷酸环化酶的药物具有缓解神经性疼痛的潜力。
神经性疼痛被认为是神经损伤导致外周神经元放电增加以及脊髓兴奋性突触可塑性增强,而关于脑干神经可塑性变化的作用知之甚少。在此,我们研究了脊髓神经结扎(SNL)诱导的神经性疼痛大鼠中,腹外侧(vl)导水管周围灰质(PAG)(启动下行性疼痛抑制的关键中脑区域)的突触可塑性变化。在假手术大鼠的vlPAG切片中,腺苷酸环化酶(AC)激活剂福斯可林可使EPSC产生持久增强。这是一种突触前效应,因为福斯可林降低了EPSC的双脉冲比率和失败率,并增加了微小兴奋性突触后电流(mEPSC)的频率,但未增加其幅度。β - 肾上腺素能激动剂(异丙肾上腺素)可模拟福斯可林诱导的EPSC增强,AC抑制剂(SQ 22536)和cAMP依赖性蛋白激酶(PKA)抑制剂(H89)可阻断该增强作用,但磷酸二酯酶(PDE)抑制剂(Ro 20 - 1724)或A1 - 腺苷拮抗剂(DPCPX)则不能。在SNL大鼠的PAG切片中,福斯可林和异丙肾上腺素诱导的EPSC增强均受损。与假手术组相比,SNL组PAG突触体中的AC活性较低,但PDE活性无差异。相反,SNL组和假手术组vlPAG切片中的抑制性突触后电流(IPSC)无差异。向vlPAG内微量注射福斯可林可减轻SNL诱导的大鼠机械性异常性疼痛。这些结果表明,SNL导致下行性疼痛抑制不足,这是由于AC - cAMP - PKA信号级联介导的谷氨酸能突触可塑性受损所致,可能是由于PAG中AC下调,导致长期神经性疼痛。