Suppr超能文献

复合AUC估计值对毒理学实验中全身暴露预测的影响。

The impact of composite AUC estimates on the prediction of systemic exposure in toxicology experiments.

作者信息

Sahota Tarjinder, Danhof Meindert, Della Pasqua Oscar

机构信息

Division of Pharmacology, Leiden Academic Centre for Drug Research, University of Leiden, Leiden, The Netherlands.

出版信息

J Pharmacokinet Pharmacodyn. 2015 Jun;42(3):251-61. doi: 10.1007/s10928-015-9413-5. Epub 2015 Apr 14.

Abstract

Current toxicity protocols relate measures of systemic exposure (i.e. AUC, Cmax) as obtained by non-compartmental analysis to observed toxicity. A complicating factor in this practice is the potential bias in the estimates defining safe drug exposure. Moreover, it prevents the assessment of variability. The objective of the current investigation was therefore (a) to demonstrate the feasibility of applying nonlinear mixed effects modelling for the evaluation of toxicokinetics and (b) to assess the bias and accuracy in summary measures of systemic exposure for each method. Here, simulation scenarios were evaluated, which mimic toxicology protocols in rodents. To ensure differences in pharmacokinetic properties are accounted for, hypothetical drugs with varying disposition properties were considered. Data analysis was performed using non-compartmental methods and nonlinear mixed effects modelling. Exposure levels were expressed as area under the concentration versus time curve (AUC), peak concentrations (Cmax) and time above a predefined threshold (TAT). Results were then compared with the reference values to assess the bias and precision of parameter estimates. Higher accuracy and precision were observed for model-based estimates (i.e. AUC, Cmax and TAT), irrespective of group or treatment duration, as compared with non-compartmental analysis. Despite the focus of guidelines on establishing safety thresholds for the evaluation of new molecules in humans, current methods neglect uncertainty, lack of precision and bias in parameter estimates. The use of nonlinear mixed effects modelling for the analysis of toxicokinetics provides insight into variability and should be considered for predicting safe exposure in humans.

摘要

当前的毒性试验方案将通过非房室分析获得的全身暴露量度(即AUC、Cmax)与观察到的毒性联系起来。这种做法中的一个复杂因素是定义安全药物暴露量估计值时存在潜在偏差。此外,它还妨碍了对变异性的评估。因此,本研究的目的是:(a)证明应用非线性混合效应模型评估毒代动力学的可行性;(b)评估每种方法全身暴露汇总量度中的偏差和准确性。在此,对模拟啮齿动物毒理学试验方案的模拟场景进行了评估。为确保考虑到药代动力学特性的差异,考虑了具有不同处置特性的假设药物。使用非房室方法和非线性混合效应模型进行数据分析。暴露水平以浓度-时间曲线下面积(AUC)、峰值浓度(Cmax)和高于预定义阈值的时间(TAT)表示。然后将结果与参考值进行比较,以评估参数估计值的偏差和精密度。与非房室分析相比,无论组别或治疗持续时间如何,基于模型的估计值(即AUC、Cmax和TAT)的准确性和精密度更高。尽管指南侧重于为评估人类新分子建立安全阈值,但目前的方法忽略了参数估计中的不确定性、缺乏精密度和偏差。使用非线性混合效应模型分析毒代动力学可深入了解变异性,在预测人类安全暴露时应予以考虑。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2213/4432106/5c0776034e3f/10928_2015_9413_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验