Rodriguez Anne, Frottier Ophélie, Herbinet Olivier, Fournet René, Bounaceur Roda, Fittschen Christa, Battin-Leclerc Frédérique
†Laboratoire Réactions et Génie des Procédés, CNRS, Université de Lorraine, BP 20451, 1 rue Grandville, 54000 Nancy, France.
‡PhysicoChimie des Processus de Combustion et de l'Atmosphère (PC2A) UMR 8522 CNRS/Lille 1, Université de Lille, Cité scientifique, 59655 Villeneuve d'Ascq Cedex, France.
J Phys Chem A. 2015 Jul 16;119(28):7905-23. doi: 10.1021/acs.jpca.5b01939. Epub 2015 Apr 30.
The oxidation of dimethyl ether (DME) was studied using a jet-stirred reactor over a wide range of conditions: temperatures from 500 to 1100 K; equivalence ratios of 0.25, 1, and 2; residence time of 2 s; pressure of 106.7 kPa (close to the atmospheric pressure); and an inlet fuel mole fraction of 0.02 (with high dilution in helium). Reaction products were quantified using two analysis methods: gas chromatography and continuous wave cavity ring-down spectroscopy (cw-CRDS). cw-CRDS enabled the quantification of formaldehyde, which is one of the major products from DME oxidation, as well as that of hydrogen peroxide, which is an important branching agent in low-temperature oxidation chemistry. Experimental data were compared with data computed using models from the literature with important deviations being observed for the reactivity at low-temperature. A new detailed kinetic model for the oxidation of DME was developed in this study. Kinetic parameters used in this model were taken from literature or calculated in the present work using quantum calculations. This new model enables a better prediction of the reactivity in the low-temperature region. Under the present JSR conditions, error bars on predictions were given. Simulations were also successfully compared with experimental flow reactor, jet-stirred reactor, shock tube, rapid compression machine, and flame data from literature. The kinetic analysis of the model enabled the highlighting of some specificities of the oxidation chemistry of DME: (1) the early reactivity which is observed at very low-temperature (e.g., compared to propane) is explained by the absence of inhibiting reaction of the radical directly obtained from the fuel (by H atom abstraction) with oxygen yielding an olefin + HO2·; (2) the low-temperature reactivity is driven by the relative importance of the second addition to O2 (promoting the reactivity through branching chain) and the competitive decomposition reactions with an inhibiting effect.
使用喷射搅拌反应器在广泛的条件下研究了二甲醚(DME)的氧化:温度范围为500至1100K;当量比为0.25、1和2;停留时间为2秒;压力为106.7kPa(接近大气压);入口燃料摩尔分数为0.02(在氦气中高度稀释)。使用两种分析方法对反应产物进行定量:气相色谱法和连续波腔衰荡光谱法(cw-CRDS)。cw-CRDS能够对二甲醚氧化的主要产物之一甲醛以及低温氧化化学中重要的支化剂过氧化氢进行定量。将实验数据与使用文献模型计算的数据进行了比较,发现在低温下的反应活性存在重要偏差。本研究开发了一种新的二甲醚氧化详细动力学模型。该模型中使用的动力学参数取自文献或在本工作中使用量子计算得出。这个新模型能够更好地预测低温区域的反应活性。在当前喷射搅拌反应器条件下,给出了预测的误差范围。模拟结果还成功地与文献中的实验流动反应器、喷射搅拌反应器、激波管、快速压缩机和火焰数据进行了比较。该模型的动力学分析突出了二甲醚氧化化学的一些特性:(1)在非常低温下观察到的早期反应活性(例如,与丙烷相比)是由于从燃料直接获得的自由基(通过氢原子提取)与氧气反应生成烯烃+HO2·的抑制反应不存在;(2)低温反应活性由第二次与O2加成(通过支链促进反应活性)的相对重要性以及具有抑制作用的竞争性分解反应驱动。