Suppr超能文献

度相关性对无标度网络爆发性同步的影响。

Effects of degree correlations on the explosive synchronization of scale-free networks.

作者信息

Sendiña-Nadal I, Leyva I, Navas A, Villacorta-Atienza J A, Almendral J A, Wang Z, Boccaletti S

机构信息

Complex Systems Group, Universidad Rey Juan Carlos, 28933 Móstoles, Madrid, Spain.

Center for Biomedical Technology, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Mar;91(3):032811. doi: 10.1103/PhysRevE.91.032811. Epub 2015 Mar 26.

Abstract

We study the organization of finite-size, large ensembles of phase oscillators networking via scale-free topologies in the presence of a positive correlation between the oscillators' natural frequencies and the network's degrees. Under those circumstances, abrupt transitions to synchronization are known to occur in growing scale-free networks, while the transition has a completely different nature for static random configurations preserving the same structure-dynamics correlation. We show that the further presence of degree-degree correlations in the network structure has important consequences on the nature of the phase transition characterizing the passage from the phase-incoherent to the phase-coherent network state. While high levels of positive and negative mixing consistently induce a second-order phase transition, moderate values of assortative mixing, such as those ubiquitously characterizing social networks in the real world, greatly enhance the irreversible nature of explosive synchronization in scale-free networks. The latter effect corresponds to a maximization of the area and of the width of the hysteretic loop that differentiates the forward and backward transitions to synchronization.

摘要

我们研究了在振荡器的固有频率与网络度之间存在正相关的情况下,通过无标度拓扑结构联网的有限规模、大集合的相位振荡器的组织。在这些情况下,已知在不断增长的无标度网络中会发生向同步的突然转变,而对于保持相同结构 - 动力学相关性的静态随机配置,这种转变具有完全不同的性质。我们表明,网络结构中进一步存在度 - 度相关性对表征从相位非相干到相位相干网络状态转变的相变性质具有重要影响。虽然高水平的正混合和负混合一致地诱导二阶相变,但适度的 assortative 混合值,例如现实世界中普遍表征社交网络的那些值,极大地增强了无标度网络中爆发性同步的不可逆性质。后一种效应对应于区分同步的正向和反向转变的滞后回线的面积和宽度的最大化。

相似文献

1
Effects of degree correlations on the explosive synchronization of scale-free networks.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Mar;91(3):032811. doi: 10.1103/PhysRevE.91.032811. Epub 2015 Mar 26.
2
Explosive synchronization transitions in complex neural networks.
Chaos. 2013 Sep;23(3):033124. doi: 10.1063/1.4818543.
3
Criterion for the emergence of explosive synchronization transitions in networks of phase oscillators.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Oct;88(4):042921. doi: 10.1103/PhysRevE.88.042921. Epub 2013 Oct 28.
4
Reexamination of explosive synchronization in scale-free networks: the effect of disassortativity.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Apr;87(4):042803. doi: 10.1103/PhysRevE.87.042803. Epub 2013 Apr 3.
5
Effects of assortative mixing in the second-order Kuramoto model.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 May;91(5):052805. doi: 10.1103/PhysRevE.91.052805. Epub 2015 May 11.
6
Disorder induces explosive synchronization.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Jun;89(6):062811. doi: 10.1103/PhysRevE.89.062811. Epub 2014 Jun 24.
7
Explosive synchronization in weighted complex networks.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Oct;88(4):042808. doi: 10.1103/PhysRevE.88.042808. Epub 2013 Oct 14.
8
Self-similarity in explosive synchronization of complex networks.
Phys Rev E. 2017 Dec;96(6-1):062312. doi: 10.1103/PhysRevE.96.062312. Epub 2017 Dec 18.
9
Explosive synchronization enhanced by time-delayed coupling.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jul;86(1 Pt 2):016102. doi: 10.1103/PhysRevE.86.016102. Epub 2012 Jul 6.
10
Optimal synchronization of directed complex networks.
Chaos. 2016 Sep;26(9):094807. doi: 10.1063/1.4954221.

引用本文的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验