Paget Vincent, Dekali Samir, Kortulewski Thierry, Grall Romain, Gamez Christelle, Blazy Kelly, Aguerre-Chariol Olivier, Chevillard Sylvie, Braun Anne, Rat Patrice, Lacroix Ghislaine
Institut National de l'Environnement Industriel et des Risques (INERIS), Unité de Toxicologie Expérimentale, Parc Technologique ALATA, BP2, Verneuil-en-Halatte, France.
Institut National de l'Environnement Industriel et des Risques (INERIS), Unité de Toxicologie Expérimentale, Parc Technologique ALATA, BP2, Verneuil-en-Halatte, France; Laboratoire de chimie et toxicologie analytique et cellulaire (C-TAC) / UMR CNRS 8638, Faculté de Pharmacie de Paris, Université Paris Descartes (PRES Sorbonne Paris Cité), Paris, France.
PLoS One. 2015 Apr 15;10(4):e0123297. doi: 10.1371/journal.pone.0123297. eCollection 2015.
Nanoparticle surface chemistry is known to play a crucial role in interactions with cells and their related cytotoxic effects. As inhalation is a major route of exposure to nanoparticles, we studied specific uptake and damages of well-characterized fluorescent 50 nm polystyrene (PS) nanobeads harboring different functionalized surfaces (non-functionalized, carboxylated and aminated) on pulmonary epithelial cells and macrophages (Calu-3 and THP-1 cell lines respectively). Cytotoxicity of in mass dye-labeled functionalized PS nanobeads was assessed by xCELLigence system and alamarBlue viability assay. Nanobeads-cells interactions were studied by video-microscopy, flow cytometry and also confocal microscopy. Finally ROS generation was assessed by glutathione depletion dosages and genotoxicity was assessed by γ-H2Ax foci detection, which is considered as the most sensitive technique for studying DNA double strand breaks. The uptake kinetic was different for each cell line. All nanobeads were partly adsorbed and internalized, then released by Calu-3 cells, while THP-1 macrophages quickly incorporated all nanobeads which were located in the cytoplasm rather than in the nuclei. In parallel, the genotoxicity study reported that only aminated nanobeads significantly increased DNA damages in association with a strong depletion of reduced glutathione in both cell lines. We showed that for similar nanoparticle concentrations and sizes, aminated polystyrene nanobeads were more cytotoxic and genotoxic than unmodified and carboxylated ones on both cell lines. Interestingly, aminated polystyrene nanobeads induced similar cytotoxic and genotoxic effects on Calu-3 epithelial cells and THP-1 macrophages, for all levels of intracellular nanoparticles tested. Our results strongly support the primordial role of nanoparticles surface chemistry on cellular uptake and related biological effects. Moreover our data clearly show that nanoparticle internalization and observed adverse effects are not necessarily associated.
众所周知,纳米颗粒的表面化学在与细胞的相互作用及其相关的细胞毒性效应中起着关键作用。由于吸入是接触纳米颗粒的主要途径,我们研究了具有不同功能化表面(未功能化、羧基化和胺基化)的50纳米荧光聚苯乙烯(PS)纳米珠在肺上皮细胞和巨噬细胞(分别为Calu-3和THP-1细胞系)上的特异性摄取和损伤情况。通过xCELLigence系统和alamarBlue活力测定法评估了大量染料标记的功能化PS纳米珠的细胞毒性。通过视频显微镜、流式细胞术以及共聚焦显微镜研究了纳米珠与细胞的相互作用。最后,通过谷胱甘肽消耗剂量评估了活性氧的产生,并通过γ-H2Ax焦点检测评估了遗传毒性,γ-H2Ax焦点检测被认为是研究DNA双链断裂最敏感的技术。每个细胞系的摄取动力学都不同。所有纳米珠都部分被吸附并内化,然后被Calu-3细胞释放,而THP-1巨噬细胞迅速摄取了所有位于细胞质而非细胞核中的纳米珠。同时,遗传毒性研究报告称,只有胺基化纳米珠在两个细胞系中均显著增加了DNA损伤,并伴随着还原型谷胱甘肽的大量消耗。我们表明,对于相似的纳米颗粒浓度和尺寸,胺基化聚苯乙烯纳米珠在两个细胞系上比未修饰和羧基化的纳米珠具有更高的细胞毒性和遗传毒性。有趣的是,对于所有测试的细胞内纳米颗粒水平,胺基化聚苯乙烯纳米珠对Calu-3上皮细胞和THP-1巨噬细胞诱导了相似的细胞毒性和遗传毒性效应。我们的结果有力地支持了纳米颗粒表面化学在细胞摄取和相关生物学效应中的首要作用。此外,我们的数据清楚地表明,纳米颗粒的内化与观察到的不良反应不一定相关。