Suppr超能文献

利用胎儿和成人基因重编程治疗心脏病。

Harnessing fetal and adult genetic reprograming for therapy of heart disease.

作者信息

Nandi Shyam Sundar, Mishra Paras Kumar

机构信息

Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA.

Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA ; Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA.

出版信息

J Nat Sci. 2015 Apr;1(4).

Abstract

Heart is the first organ formed during organogenesis. The fetal heart undergoes several structural and functional modifications to form the four-chambered mammalian heart. The adult heart shows different adaptations during compensatory and decompensatory heart failure. However, one common adaptation in the pathological heart is fetal reprogramming, where the adult heart expresses several genes and miRNAs which are active in the fetal stage. The fetal reprogramming in the failing heart raises several questions, such as whether the switch of adult to fetal genetic programming is an adaptive response to cope with adverse remodeling of the heart, does the expression of fetal genes protect the heart during compensatory and/or decompensatory heart failure, does repressing the fetal gene in the failing heart is protective to the heart? To answer these questions, we need to understand the expression of genes and miRNAs that are reprogrammed in the failing heart. In view of this, we provided an overview of differentially expressed genes and miRNAs, and their regulation in this review. Further, we elaborated novel strategies for a plausible future therapy of cardiovascular diseases.

摘要

心脏是器官发生过程中形成的第一个器官。胎儿心脏会经历几次结构和功能上的改变,以形成四腔的哺乳动物心脏。成体心脏在代偿性和失代偿性心力衰竭期间表现出不同的适应性变化。然而,病理性心脏中一个常见的适应性变化是胎儿重编程,即成年心脏表达一些在胎儿阶段活跃的基因和微小RNA(miRNA)。衰竭心脏中的胎儿重编程引发了几个问题,比如从成年基因程序转换为胎儿基因程序是否是一种应对心脏不良重塑的适应性反应,胎儿基因的表达在代偿性和/或失代偿性心力衰竭期间是否能保护心脏,在衰竭心脏中抑制胎儿基因对心脏是否有保护作用?为了回答这些问题,我们需要了解在衰竭心脏中发生重编程的基因和miRNA的表达情况。鉴于此,我们在本综述中概述了差异表达的基因和miRNA及其调控。此外,我们阐述了未来治疗心血管疾病的合理新策略。

相似文献

5
microRNA expression profiling of heart tissue during fetal development.
Int J Mol Med. 2014 May;33(5):1250-60. doi: 10.3892/ijmm.2014.1691. Epub 2014 Mar 7.
7
MiRNAs as potential molecular targets in heart failure.
Future Cardiol. 2014 Nov;10(6):789-800. doi: 10.2217/fca.14.64.

引用本文的文献

1
MicroRNAs Targeting Critical Molecular Pathways in Diabetic Cardiomyopathy Emerging Valuable for Therapy.
Cardiovasc Hematol Agents Med Chem. 2024;22(3):298-307. doi: 10.2174/0118715257265947231129074526.
2
Triplication of the interferon receptor locus contributes to hallmarks of Down syndrome in a mouse model.
Nat Genet. 2023 Jun;55(6):1034-1047. doi: 10.1038/s41588-023-01399-7. Epub 2023 Jun 5.
3
Pathophysiology of Ca1.3 L-type calcium channels in the heart.
Front Physiol. 2023 Mar 21;14:1144069. doi: 10.3389/fphys.2023.1144069. eCollection 2023.
4
Genome-wide fetalization of enhancer architecture in heart disease.
Cell Rep. 2022 Sep 20;40(12):111400. doi: 10.1016/j.celrep.2022.111400.
7
MMP9 inhibition increases autophagic flux in chronic heart failure.
Am J Physiol Heart Circ Physiol. 2020 Dec 1;319(6):H1414-H1437. doi: 10.1152/ajpheart.00032.2020. Epub 2020 Oct 16.
8
Right ventricular phenotype, function, and failure: a journey from evolution to clinics.
Heart Fail Rev. 2021 Nov;26(6):1447-1466. doi: 10.1007/s10741-020-09982-4.
9
Glial cells influence cardiac permittivity as evidenced through in vitro and in silico models.
Biofabrication. 2019 Dec 2;12(1):015014. doi: 10.1088/1758-5090/ab4c0a.
10
Transient inhibition of neddylation at neonatal stage evokes reversible cardiomyopathy and predisposes the heart to isoproterenol-induced heart failure.
Am J Physiol Heart Circ Physiol. 2019 Jun 1;316(6):H1406-H1416. doi: 10.1152/ajpheart.00806.2018. Epub 2019 Mar 29.

本文引用的文献

1
Adiponectin ameliorates hyperglycemia-induced cardiac hypertrophy and dysfunction by concomitantly activating Nrf2 and Brg1.
Free Radic Biol Med. 2015 Jul;84:311-321. doi: 10.1016/j.freeradbiomed.2015.03.007. Epub 2015 Mar 17.
2
Long noncoding Mhrt RNA: molecular crowbar unravel insights into heart failure treatment.
Circ Cardiovasc Genet. 2015 Feb;8(1):213-5. doi: 10.1161/CIRCGENETICS.115.001019.
3
Long noncoding RNAs and microRNAs in cardiovascular pathophysiology.
Circ Res. 2015 Feb 13;116(4):751-62. doi: 10.1161/CIRCRESAHA.116.303549.
4
Long noncoding RNAs in cardiovascular diseases.
Circ Res. 2015 Feb 13;116(4):737-50. doi: 10.1161/CIRCRESAHA.116.302521.
5
Noncoding RNAs as regulators of cardiomyocyte proliferation and death.
J Mol Cell Cardiol. 2015 Dec;89(Pt A):59-67. doi: 10.1016/j.yjmcc.2015.02.002. Epub 2015 Feb 7.
6
Circulating microRNAs in response to exercise.
Scand J Med Sci Sports. 2015 Apr;25(2):e149-54. doi: 10.1111/sms.12421. Epub 2015 Feb 3.
7
Congenital Heart Disease: Causes, Diagnosis, Symptoms, and Treatments.
Cell Biochem Biophys. 2015 Jul;72(3):857-60. doi: 10.1007/s12013-015-0551-6.
8
Circulating microRNAs in heart failure with reduced and preserved left ventricular ejection fraction.
Eur J Heart Fail. 2015 Apr;17(4):393-404. doi: 10.1002/ejhf.223. Epub 2015 Jan 23.
9
MicroRNAs: powerful regulators and potential diagnostic tools in cardiovascular disease.
Kardiol Pol. 2015;73(1):1-6. doi: 10.5603/KP.a2014.0210. Epub 2014 Nov 5.
10
A miR-208-Mef2 axis drives the decompensation of right ventricular function in pulmonary hypertension.
Circ Res. 2015 Jan 2;116(1):56-69. doi: 10.1161/CIRCRESAHA.115.303910. Epub 2014 Oct 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验