Suppr超能文献

从连接图谱数据中恢复药物诱导的凋亡子网

Recovering drug-induced apoptosis subnetwork from Connectivity Map data.

作者信息

Yu Jiyang, Putcha Preeti, Silva Jose M

机构信息

Department of Precision Medicine, Oncology Research Unit, Pfizer Inc., Pearl River, NY 10965, USA.

Department of Pathology, Columbia University, New York, NY 10032, USA.

出版信息

Biomed Res Int. 2015;2015:708563. doi: 10.1155/2015/708563. Epub 2015 Mar 25.

Abstract

The Connectivity Map (CMAP) project profiled human cancer cell lines exposed to a library of anticancer compounds with the goal of connecting cancer with underlying genes and potential treatments. Since the therapeutic goal of most anticancer drugs is to induce tumor-selective apoptosis, it is critical to understand the specific cell death pathways triggered by drugs. This can help to better understand the mechanism of how cancer cells respond to chemical stimulations and improve the treatment of human tumors. In this study, using CMAP microarray data from breast cancer cell line MCF7, we applied a Gaussian Bayesian network modeling approach and identified apoptosis as a major drug-induced cellular-pathway. We then focused on 13 apoptotic genes that showed significant differential expression across all drug-perturbed samples to reconstruct the apoptosis network. In our predicted subnetwork, 9 out of 15 high-confidence interactions were validated in the literature, and our inferred network captured two major cell death pathways by identifying BCL2L11 and PMAIP1 as key interacting players for the intrinsic apoptosis pathway and TAXBP1 and TNFAIP3 for the extrinsic apoptosis pathway. Our inferred apoptosis network also suggested the role of BCL2L11 and TNFAIP3 as "gateway" genes in the drug-induced intrinsic and extrinsic apoptosis pathways.

摘要

连接图谱(CMAP)项目对暴露于抗癌化合物文库的人类癌细胞系进行了分析,目的是将癌症与潜在基因和治疗方法联系起来。由于大多数抗癌药物的治疗目标是诱导肿瘤选择性凋亡,因此了解药物触发的特定细胞死亡途径至关重要。这有助于更好地理解癌细胞对化学刺激的反应机制,并改善人类肿瘤的治疗。在本研究中,我们使用来自乳腺癌细胞系MCF7的CMAP微阵列数据,应用高斯贝叶斯网络建模方法,并将凋亡确定为主要的药物诱导细胞途径。然后,我们聚焦于13个在所有药物干扰样本中表现出显著差异表达的凋亡基因,以重建凋亡网络。在我们预测的子网络中,15个高可信度相互作用中有9个在文献中得到验证,并且我们推断的网络通过将BCL2L11和PMAIP1确定为内在凋亡途径的关键相互作用因子,以及TAXBP1和TNFAIP3确定为外在凋亡途径的关键相互作用因子,捕获了两条主要的细胞死亡途径。我们推断的凋亡网络还表明BCL2L11和TNFAIP3在药物诱导的内在和外在凋亡途径中作为“网关”基因的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b00f/4389823/7076b722d64c/BMRI2015-708563.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验