Suppr超能文献

在内质网-质膜交界处由Nir2和Nir3蛋白调节的磷脂酰肌醇4,5-二磷酸稳态

Phosphatidylinositol 4,5-Bisphosphate Homeostasis Regulated by Nir2 and Nir3 Proteins at Endoplasmic Reticulum-Plasma Membrane Junctions.

作者信息

Chang Chi-Lun, Liou Jen

机构信息

From the Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390.

From the Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390

出版信息

J Biol Chem. 2015 Jun 5;290(23):14289-301. doi: 10.1074/jbc.M114.621375. Epub 2015 Apr 17.

Abstract

Phosphatidylinositol (PI) 4,5-bisphosphate (PIP2) at the plasma membrane (PM) constitutively controls many cellular functions, and its hydrolysis via receptor stimulation governs cell signaling. The PI transfer protein Nir2 is essential for replenishing PM PIP2 following receptor-induced hydrolysis, but key mechanistic aspects of this process remain elusive. Here, we demonstrate that PI at the membrane of the endoplasmic reticulum (ER) is required for the rapid replenishment of PM PIP2 mediated by Nir2. Nir2 detects PIP2 hydrolysis and translocates to ER-PM junctions via binding to phosphatidic acid. With distinct phosphatidic acid binding abilities and PI transfer protein activities, Nir2 and its homolog Nir3 differentially regulate PIP2 homeostasis in cells during intense receptor stimulation and in the resting state, respectively. Our study reveals that Nir2 and Nir3 work in tandem to achieve different levels of feedback based on the consumption of PM PIP2 and function at ER-PM junctions to mediate nonvesicular lipid transport between the ER and the PM.

摘要

质膜(PM)上的磷脂酰肌醇(PI)4,5-二磷酸(PIP2)持续控制着许多细胞功能,其通过受体刺激的水解作用调控细胞信号传导。PI转运蛋白Nir2对于受体诱导水解后质膜PIP2的补充至关重要,但该过程的关键机制仍不清楚。在这里,我们证明内质网(ER)膜上的PI是Nir2介导的质膜PIP2快速补充所必需的。Nir2检测PIP2水解,并通过与磷脂酸结合转运至内质网-质膜交界处。由于具有不同的磷脂酸结合能力和PI转运蛋白活性,Nir2及其同源物Nir3分别在强烈受体刺激期间和静息状态下差异调节细胞中的PIP2稳态。我们的研究表明,Nir2和Nir3协同作用,根据质膜PIP2的消耗实现不同水平的反馈,并在内质网-质膜交界处发挥作用,介导内质网与质膜之间的非囊泡脂质转运。

相似文献

2
Neuronal ER-plasma membrane junctions organized by Kv2-VAP pairing recruit Nir proteins and affect phosphoinositide homeostasis.
J Biol Chem. 2019 Nov 22;294(47):17735-17757. doi: 10.1074/jbc.RA119.007635. Epub 2019 Oct 8.
3
Nir1 constitutively localizes at ER-PM junctions and promotes Nir2 recruitment for PIP homeostasis.
Mol Biol Cell. 2022 Mar 1;33(3):br2. doi: 10.1091/mbc.E21-07-0356. Epub 2022 Jan 12.
7
Phosphatidylinositol-Phosphatidic Acid Exchange by Nir2 at ER-PM Contact Sites Maintains Phosphoinositide Signaling Competence.
Dev Cell. 2015 Jun 8;33(5):549-61. doi: 10.1016/j.devcel.2015.04.028. Epub 2015 May 28.
8
Homeostatic regulation of the PI(4,5)P2-Ca(2+) signaling system at ER-PM junctions.
Biochim Biophys Acta. 2016 Aug;1861(8 Pt B):862-873. doi: 10.1016/j.bbalip.2016.02.015. Epub 2016 Feb 24.
9
Analysis of Phosphatidylinositol Transfer at ER-PM Junctions in Receptor-Stimulated Live Cells.
Methods Mol Biol. 2019;1949:1-11. doi: 10.1007/978-1-4939-9136-5_1.

引用本文的文献

1
Quantitative imaging of lipid transport in mammalian cells.
Nature. 2025 Aug 20. doi: 10.1038/s41586-025-09432-x.
2
Key challenges and recommendations for defining organelle membrane contact sites.
Nat Rev Mol Cell Biol. 2025 Jun 23. doi: 10.1038/s41580-025-00864-x.
3
STIM1/2 maintain signaling competence at ER-PM contact sites during neutrophil spreading.
J Cell Biol. 2025 May 5;224(5). doi: 10.1083/jcb.202406053. Epub 2025 Mar 21.
4
Analysis of Phosphatidylinositol Transfer at ER-PM Contact Sites in Receptor-Stimulated Live Cells.
Methods Mol Biol. 2025;2888:23-34. doi: 10.1007/978-1-0716-4318-1_3.
5
STIM1 and lipid interactions at ER-PM contact sites.
Am J Physiol Cell Physiol. 2025 Jan 1;328(1):C107-C114. doi: 10.1152/ajpcell.00634.2024. Epub 2024 Dec 2.
6
A complex of the lipid transport ER proteins TMEM24 and C2CD2 with band 4.1 at cell-cell contacts.
J Cell Biol. 2024 Nov 4;223(11). doi: 10.1083/jcb.202311137. Epub 2024 Aug 19.
7
MIP-4 is Induced by Bleomycin and Stimulates Cell Migration Partially via Nir-1 Receptor.
Biochem Res Int. 2024 Aug 2;2024:5527895. doi: 10.1155/2024/5527895. eCollection 2024.
9
Mammalian START-like phosphatidylinositol transfer proteins - Physiological perspectives and roles in cancer biology.
Biochim Biophys Acta Mol Cell Biol Lipids. 2024 Oct;1869(7):159529. doi: 10.1016/j.bbalip.2024.159529. Epub 2024 Jun 28.
10
Non-vesicular phosphatidylinositol transfer plays critical roles in defining organelle lipid composition.
EMBO J. 2024 May;43(10):2035-2061. doi: 10.1038/s44318-024-00096-3. Epub 2024 Apr 16.

本文引用的文献

1
Golgi and plasma membrane pools of PI(4)P contribute to plasma membrane PI(4,5)P2 and maintenance of KCNQ2/3 ion channel current.
Proc Natl Acad Sci U S A. 2014 Jun 3;111(22):E2281-90. doi: 10.1073/pnas.1407133111. Epub 2014 May 19.
2
A novel probe for phosphatidylinositol 4-phosphate reveals multiple pools beyond the Golgi.
J Cell Biol. 2014 Apr 14;205(1):113-26. doi: 10.1083/jcb.201312072. Epub 2014 Apr 7.
4
Phosphoinositides: tiny lipids with giant impact on cell regulation.
Physiol Rev. 2013 Jul;93(3):1019-137. doi: 10.1152/physrev.00028.2012.
6
Pitpnm1 is expressed in hair cells during development but is not required for hearing.
Neuroscience. 2013 Sep 17;248:620-5. doi: 10.1016/j.neuroscience.2013.06.045. Epub 2013 Jun 29.
7
PtdIns4P synthesis by PI4KIIIα at the plasma membrane and its impact on plasma membrane identity.
J Cell Biol. 2012 Dec 10;199(6):1003-16. doi: 10.1083/jcb.201206095.
8
The diverse functions of phosphatidylinositol transfer proteins.
Curr Top Microbiol Immunol. 2012;362:185-208. doi: 10.1007/978-94-007-5025-8_9.
9
Nonvesicular lipid transfer from the endoplasmic reticulum.
Cold Spring Harb Perspect Biol. 2012 Oct 1;4(10):a013300. doi: 10.1101/cshperspect.a013300.
10
Phosphatidylinositol transfer protein, cytoplasmic 1 (PITPNC1) binds and transfers phosphatidic acid.
J Biol Chem. 2012 Sep 14;287(38):32263-76. doi: 10.1074/jbc.M112.375840. Epub 2012 Jul 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验