Deja Rafał, Froelich Wojciech, Deja Grażyna
Department of Computer Science, Academy of Business in Dabrowa Gornicza, Cieplaka 1c, Dabrowa Gornicza, Poland.
Institute of Computer Science, University of Silesia, Bedzinska 39, Sosnowiec, Poland.
Biomed Eng Online. 2015 Feb 21;14:13. doi: 10.1186/s12938-015-0004-x.
In spite of numerous research efforts on supporting the therapy of diabetes mellitus, the subject still involves challenges and creates active interest among researchers. In this paper, a decision support tool is presented for setting insulin therapy in new-onset type 1 diabetes.
The concept of differential sequential patterns (DSPs) is introduced with the aim of representing deviations in the patient's blood glucose level (BGL) and the amount of insulin injections administered. The decision support tool is created using data mining algorithms for discovering sequential patterns.
By using the DSPs, it is possible to support the physician's decisionmaking concerning changing the treatment (i.e., whether to increase or decrease the insulin dosage). The other contributions of the paper are an algorithm for generating DSPs and a new method for evaluating nocturnal glycaemia. The proposed qualitative evaluation of nocturnal glycaemia improves the generalization capabilities of the DSPs.
The usefulness of the proposed approach was evident in the results of experiments in which juvenile diabetic patients actual data were used. It was confirmed that the proposed DSPs can be used to guide the therapy of numerous juvenile patients with type 1 diabetes.
尽管在支持糖尿病治疗方面进行了大量研究工作,但该主题仍存在挑战,并引起了研究人员的积极关注。本文提出了一种用于初发1型糖尿病胰岛素治疗方案制定的决策支持工具。
引入差分序列模式(DSPs)的概念,旨在表示患者血糖水平(BGL)和胰岛素注射量的偏差。利用数据挖掘算法发现序列模式,创建决策支持工具。
通过使用DSPs,可以支持医生关于改变治疗方案(即增加或减少胰岛素剂量)的决策。本文的其他贡献包括一种生成DSPs的算法和一种评估夜间血糖的新方法。所提出的夜间血糖定性评估提高了DSPs的泛化能力。
在所进行的使用青少年糖尿病患者实际数据的实验结果中,所提出方法的实用性显而易见。证实所提出的DSPs可用于指导众多1型糖尿病青少年患者的治疗。