Helen DeVos Children's Hospital, Spectrum Health System, Grand Rapids, MI, USA.
Van Andel Research Institute, Grand Rapids, MI, USA.
J Transl Med. 2015 Apr 2;13:110. doi: 10.1186/s12967-015-0466-4.
Osteosarcoma (OS) is the most common type of solid bone cancer, with latent metastasis being a typical mode of disease progression and a major contributor to poor prognosis. For this to occur, cells must resist anoikis and be able to recapitulate tumorigenesis in a foreign microenvironment. Finding novel approaches to treat osteosarcoma and target those cell subpopulations that possess the ability to resist anoikis and contribute to metastatic disease is imperative. Here we investigate anchorage-independent (AI) cell growth as a model to better characterize anoikis resistance in human osteosarcoma while using an expression profiling approach to identify and test targetable signaling pathways.
Established human OS cell lines and patient-derived human OS cell isolates were subjected to growth in either adherent or AI conditions using Ultra-Low Attachment plates in identical media conditions. Growth rate was assessed using cell doubling times and chemoresistance was assessed by determining cell viability in response to a serial dilution of either doxorubicin or cisplatin. Gene expression differences were examined using quantitative reverse-transcription PCR and microarray with principal component and pathway analysis. In-vivo OS xenografts were generated by either subcutaneous or intratibial injection of adherent or AI human OS cells into athymic nude mice. Statistical significance was determined using student's t-tests with significance set at α=0.05.
We show that AI growth results in a global gene expression profile change accompanied by significant chemoresistance (up to 75 fold, p<0.05). AI cells demonstrate alteration of key mediators of mesenchymal differentiation (β-catenin, Runx2), stemness (Sox2), proliferation (c-myc, Akt), and epigenetic regulation (HDAC class 1). AI cells were equally tumorigenic as their adherent counterparts, but showed a significantly decreased rate of growth in-vitro and in-vivo (p<0.05). Treatment with the pan-histone deacetylase inhibitor vorinostat and the DNA methyltransferase inhibitor 5-azacytidine mitigated AI growth, while 5-azacytidine sensitized anoikis-resistant cells to doxorubicin (p<0.05).
These data demonstrate remarkable plasticity in anoikis-resistant human osteosarcoma subpopulations accompanied by a rapid development of chemoresistance and altered growth rates mirroring the early stages of latent metastasis. Targeting epigenetic regulation of this process may be a viable therapeutic strategy.
骨肉瘤(OS)是最常见的实体骨癌类型,潜在的转移是疾病进展的典型模式,也是预后不良的主要原因。为了实现这一点,细胞必须抵抗失巢凋亡,并且能够在异质微环境中重新产生肿瘤发生。寻找新的方法来治疗骨肉瘤并针对那些具有抵抗失巢凋亡和导致转移性疾病能力的细胞亚群是至关重要的。在这里,我们研究了无锚定依赖性(AI)细胞生长作为更好地描述人类骨肉瘤失巢凋亡抗性的模型,同时使用表达谱分析方法来鉴定和测试可靶向的信号通路。
将已建立的人类骨肉瘤细胞系和患者来源的人类骨肉瘤细胞分离物置于附着或 AI 条件下,使用超低附着平板在相同的培养基条件下进行生长。通过细胞倍增时间评估生长速度,通过确定对阿霉素或顺铂的连续稀释的细胞活力来评估化学抗性。使用定量逆转录 PCR 和微阵列进行基因表达差异检查,并进行主成分和途径分析。通过将附着或 AI 人骨肉瘤细胞皮下或胫骨内注射到无胸腺裸鼠中来生成骨肉瘤异种移植。使用学生 t 检验确定统计学意义,显著性设定为α=0.05。
我们表明,AI 生长导致伴随显著化学抗性的全局基因表达谱变化(高达 75 倍,p<0.05)。AI 细胞表现出间充质分化(β-catenin、Runx2)、干性(Sox2)、增殖(c-myc、Akt)和表观遗传调控(HDAC 类 1)关键介质的改变。AI 细胞与附着细胞具有同等的致瘤性,但在体外和体内生长速度明显降低(p<0.05)。用pan-histone deacetylase inhibitor 伏立诺他和 DNA methyltransferase inhibitor 5-azacytidine 治疗可减轻 AI 生长,而 5-azacytidine 使耐失巢凋亡的细胞对阿霉素敏感(p<0.05)。
这些数据表明,在伴有快速化学抗性发展的情况下,耐失巢凋亡的人类骨肉瘤亚群具有显著的可塑性,并且改变的生长速度反映了潜伏转移的早期阶段。靶向该过程的表观遗传调控可能是一种可行的治疗策略。