Hetemi Dardan, Hazimeh Hassan, Decorse Philippe, Galtayries Anouk, Combellas Catherine, Kanoufi Frédéric, Pinson Jean, Podvorica Fetah I
†Sorbonne Paris Cité, Univ Paris Diderot, ITODYS, UMR 7086 CNRS, 15 rue J-A de Baïf, 75013 Paris, France.
‡Chemistry Department of Natural Sciences Faculty, University of Prishtina, rr. "Nëna Tereze" nr. 5, 10000 Prishtina, Kosovo.
Langmuir. 2015 May 19;31(19):5406-15. doi: 10.1021/acs.langmuir.5b00754. Epub 2015 May 4.
The formation of partial perfluoroalkyl or alkyl radicals from partial perfluoroalkyl or alkyl iodides (ICH2CH2C6F13 and IC6H13) and their reaction with surfaces takes place at low driving force (∼-0.5 V/SCE) when the electrochemical reaction is performed in acetonitrile in the presence of diazonium salts (ArN2(+)), at a potential where the latter is reduced. By comparison to the direct grafting of ICH2CH2C6F13, this corresponds to a gain of ∼2.1 V in the case of 4-nitrobenzenediazonium. Such electrochemical reaction permits the modification of gold surfaces (and also carbon, iron, and copper) with mixed aryl-alkyl groups (Ar = 3-CH3-C6H4, 4-NO2-C6H4, and 4-Br-C6H4, R = C6H13 or (CH2)2-C6F13). These strongly bonded mixed layers are characterized by IRRAS, XPS, ToF-SIMS, ellipsometry, water contact angles, and cyclic voltammetry. The relative proportions of grafted aryl and alkyl groups can be varied along with the relative concentrations of diazonium and iodide components in the grafting solution. The formation of the films is assigned to the reaction of aryl and alkyl radicals on the surface and on the first grafted layer. The former is obtained from the electrochemical reduction of the diazonium salt; the latter results from the abstraction of an iodine atom by the aryl radical. The mechanism involved in the growth of the film provides an example of complex surface radical chemistry.
当在重氮盐(ArN2(+))存在下于乙腈中进行电化学反应时,在低驱动力(约 -0.5 V/SCE)下,部分全氟烷基或烷基碘化物(ICH2CH2C6F13 和 IC6H13)会形成部分全氟烷基或烷基自由基,并且它们会与表面发生反应,此时重氮盐会在一个其被还原的电位下发生反应。与 ICH2CH2C6F13 的直接接枝相比,对于 4 - 硝基苯重氮盐而言,这相当于获得了约 2.1 V 的电位增益。这种电化学反应允许用混合芳基 - 烷基基团(Ar = 3 - CH3 - C6H4、4 - NO2 - C6H4 和 4 - Br - C6H4,R = C6H13 或 (CH2)2 - C6F13)对金表面(以及碳、铁和铜表面)进行改性。这些牢固结合的混合层通过红外反射吸收光谱(IRRAS)、X 射线光电子能谱(XPS)、飞行时间二次离子质谱(ToF - SIMS)、椭偏仪、水接触角测量和循环伏安法进行表征。接枝的芳基和烷基基团的相对比例可以随着接枝溶液中重氮盐和碘化物组分的相对浓度而变化。膜的形成归因于表面和第一层接枝层上芳基和烷基自由基的反应。前者是通过重氮盐的电化学还原获得的;后者是芳基自由基夺取碘原子的结果。膜生长所涉及的机制提供了一个复杂表面自由基化学的例子。