Suppr超能文献

狄拉克费米子的霍夫施塔特蝴蝶中的分数量子霍尔效应。

Fractional quantum Hall effect in Hofstadter butterflies of Dirac fermions.

作者信息

Ghazaryan Areg, Chakraborty Tapash, Pietiläinen Pekka

机构信息

Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.

出版信息

J Phys Condens Matter. 2015 May 13;27(18):185301. doi: 10.1088/0953-8984/27/18/185301. Epub 2015 Apr 20.

Abstract

We report on the influence of a periodic potential on the fractional quantum Hall effect (FQHE) states in monolayer graphene. We have shown that for two values of the magnetic flux per unit cell (one-half and one-third flux quantum) an increase of the periodic potential strength results in a closure of the FQHE gap and appearance of gaps due to the periodic potential. In the case of one-half flux quantum this causes a change of the ground state and consequently the change of the momentum of the system in the ground state. While there is also crossing between low-lying energy levels for one-third flux quantum, the ground state does not change with the increase of the periodic potential strength and is always characterized by the same momentum. Finally, it is shown that for one-half flux quantum the emergent gaps are due entirely to the electron-electron interaction, whereas for the one-third flux quantum per unit cell these are due to both non-interacting electrons (Hofstadter butterfly pattern) and the electron-electron interaction.

摘要

我们报道了周期性势对单层石墨烯中分数量子霍尔效应(FQHE)态的影响。我们已经表明,对于每单位晶胞磁通量的两个值(二分之一和三分之一磁通量子),周期性势强度的增加会导致FQHE能隙的闭合以及由于周期性势而出现能隙。在二分之一磁通量子的情况下,这会导致基态的变化,进而导致系统在基态下动量的变化。虽然对于三分之一磁通量子,低能态之间也存在交叉,但基态不会随着周期性势强度的增加而改变,并且始终由相同的动量表征。最后,结果表明,对于二分之一磁通量子,出现的能隙完全归因于电子 - 电子相互作用,而对于每单位晶胞三分之一磁通量子,这些能隙则归因于非相互作用电子(霍夫施塔特蝴蝶图案)和电子 - 电子相互作用两者。

相似文献

1
Fractional quantum Hall effect in Hofstadter butterflies of Dirac fermions.
J Phys Condens Matter. 2015 May 13;27(18):185301. doi: 10.1088/0953-8984/27/18/185301. Epub 2015 Apr 20.
2
Gap structure of the Hofstadter system of interacting Dirac fermions in graphene.
Phys Rev Lett. 2014 May 2;112(17):176401. doi: 10.1103/PhysRevLett.112.176401. Epub 2014 Apr 30.
3
Emergence of massless Dirac fermions in graphene's Hofstadter butterfly at switches of the quantum Hall phase connectivity.
Phys Rev Lett. 2014 May 16;112(19):196602. doi: 10.1103/PhysRevLett.112.196602. Epub 2014 May 13.
4
Tight-binding electrons on triangular and kagomé lattices under staggered modulated magnetic fields: quantum Hall effects and Hofstadter butterflies.
J Phys Condens Matter. 2011 Apr 20;23(15):156002. doi: 10.1088/0953-8984/23/15/156002. Epub 2011 Apr 1.
5
Observation of the fractional quantum Hall effect in graphene.
Nature. 2009 Nov 12;462(7270):196-9. doi: 10.1038/nature08582. Epub 2009 Nov 1.
6
Massive Dirac fermions and Hofstadter butterfly in a van der Waals heterostructure.
Science. 2013 Jun 21;340(6139):1427-30. doi: 10.1126/science.1237240. Epub 2013 May 16.
7
Fractional quantum Hall States of Dirac electrons in graphene.
Phys Rev Lett. 2006 Sep 22;97(12):126801. doi: 10.1103/PhysRevLett.97.126801.
8
Enigmatic 4/11 state: a prototype for unconventional fractional quantum Hall effect.
Phys Rev Lett. 2014 Jan 10;112(1):016801. doi: 10.1103/PhysRevLett.112.016801. Epub 2014 Jan 6.
9
Fractional quantum Hall effect and Wigner crystal of interacting composite fermions.
Phys Rev Lett. 2014 Dec 12;113(24):246803. doi: 10.1103/PhysRevLett.113.246803. Epub 2014 Dec 11.
10
Evidence for a fractional fractal quantum Hall effect in graphene superlattices.
Science. 2015 Dec 4;350(6265):1231-4. doi: 10.1126/science.aad2102.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验