Wang Hongyu, Xu Ling, Zhang Renqi, Ge Zhaoyun, Zhang Wenping, Xu Jun, Ma Zhongyuan, Chen Kunji
National Laboratory of Solid State Microstructure and School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093 People's Republic of China ; Nanjing University of Posts and Telecommunications, Nanjing, 210003 Jiangsu Province People's Republic of China.
National Laboratory of Solid State Microstructure and School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093 People's Republic of China.
Nanoscale Res Lett. 2015 Mar 12;10:128. doi: 10.1186/s11671-015-0833-3. eCollection 2015.
Au nanoparticles (Au NPs)/CdTe/CdS QDs nanocomposite films were fabricated by deposition of Au NPs and layer-by-layer self-assembly of colloidal CdTe/CdS QDs. Photoluminescence (PL) spectra showed that Au NPs incorporation resulted in an increase of PL intensity about 16-fold compared with that of the samples without Au NPs. PL enhancement of Au NPs/CdTe/CdS QDs nanocomposite films can be controlled by tuning the thickness of spacer layer between the metal nanoparticles (MNPs) and QDs. Optical absorption spectra exhibited the incorporation of Au NPs boosted the absorption of Au NPs/CdTe/CdS QDs nanocomposite films. The results of finite-difference time-domain (FDTD) simulation indicated that the increased sizes of Au NPs resulted in stronger localization of electric field, which boosted the PL intensity of QDs in the vicinity of Au NPs. We thought that these were mainly attributed to localized SP enhancement effects of the Au NPs. Our experiment results demonstrated that Au NPs/QDs nanocomposite films would be a promising candidate for optoelectronic devices application. PACS 78.55.-m; 82.33.Ln; 68.65.Hb.
通过沉积金纳米颗粒(Au NPs)以及胶体碲化镉/硫化镉量子点(CdTe/CdS QDs)的层层自组装制备了金纳米颗粒/碲化镉/硫化镉量子点纳米复合薄膜。光致发光(PL)光谱表明,与不含金纳米颗粒的样品相比,掺入金纳米颗粒使PL强度增加了约16倍。金纳米颗粒/碲化镉/硫化镉量子点纳米复合薄膜的PL增强可通过调节金属纳米颗粒(MNPs)与量子点之间间隔层的厚度来控制。光学吸收光谱显示,金纳米颗粒的掺入增强了金纳米颗粒/碲化镉/硫化镉量子点纳米复合薄膜的吸收。时域有限差分(FDTD)模拟结果表明,金纳米颗粒尺寸的增加导致电场更强的局域化,从而增强了金纳米颗粒附近量子点的PL强度。我们认为这些主要归因于金纳米颗粒的局域表面等离子体增强效应。我们的实验结果表明,金纳米颗粒/量子点纳米复合薄膜将是光电器件应用的一个有前途的候选材料。物理和天文学分类代码(PACS):78.55.-m;82.33.Ln;68.65.Hb。