Suppr超能文献

沉默调节蛋白催化脱酰基反应中酰基选择性和NAD⁺依赖性的动力学及结构基础

Kinetic and Structural Basis for Acyl-Group Selectivity and NAD(+) Dependence in Sirtuin-Catalyzed Deacylation.

作者信息

Feldman Jessica L, Dittenhafer-Reed Kristin E, Kudo Norio, Thelen Julie N, Ito Akihiro, Yoshida Minoru, Denu John M

机构信息

Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53715.

Seed Compounds Exploratory Unit for Drug Discovery Platform, RIKEN Center for Sustainable Resource Science, Hirosawa 2-1, Wako, Saitama 351-0198, Japan.

出版信息

Biochemistry. 2015 May 19;54(19):3037-3050. doi: 10.1021/acs.biochem.5b00150. Epub 2015 May 4.

Abstract

Acylation of lysine is an important protein modification regulating diverse biological processes. It was recently demonstrated that members of the human Sirtuin family are capable of catalyzing long chain deacylation, in addition to the well-known NAD(+)-dependent deacetylation activity [Feldman, J. L., Baeza, J., and Denu, J. M. (2013) J. Biol. Chem. 288, 31350-31356]. Here we provide a detailed kinetic and structural analysis that describes the interdependence of NAD(+)-binding and acyl-group selectivity for a diverse series of human Sirtuins, SIRT1-SIRT3 and SIRT6. Steady-state and rapid-quench kinetic analyses indicated that differences in NAD(+) saturation and susceptibility to nicotinamide inhibition reflect unique kinetic behavior displayed by each Sirtuin and depend on acyl substrate chain length. Though the rate of nucleophilic attack of the 2'-hydroxyl on the C1'-O-alkylimidate intermediate varies with acyl substrate chain length, this step remains rate-determining for SIRT2 and SIRT3; however, for SIRT6, this step is no longer rate-limiting for long chain substrates. Cocrystallization of SIRT2 with myristoylated peptide and NAD(+) yielded a co-complex structure with reaction product 2'-O-myristoyl-ADP-ribose, revealing a latent hydrophobic cavity to accommodate the long chain acyl group, and suggesting a general mechanism for long chain deacylation. Comparing two separately determined co-complex structures containing either a myristoylated peptide or 2'-O-myristoyl-ADP-ribose indicates there are conformational changes at the myristoyl-ribose linkage with minimal structural differences in the enzyme active site. During the deacylation reaction, the fatty acyl group is held in a relatively fixed position. We describe a kinetic and structural model to explain how various Sirtuins display unique acyl substrate preferences and how different reaction kinetics influence NAD(+) dependence. The biological implications are discussed.

摘要

赖氨酸的酰化是一种调节多种生物过程的重要蛋白质修饰。最近有研究表明,人类沉默调节蛋白(Sirtuin)家族成员除了具有众所周知的依赖烟酰胺腺嘌呤二核苷酸(NAD⁺)的去乙酰化活性外,还能够催化长链脱酰基反应[费尔德曼,J. L.,贝扎,J.,和德努,J. M.(2013年)《生物化学杂志》288卷,31350 - 31356页]。在此,我们提供了详细的动力学和结构分析,描述了NAD⁺结合与一系列不同的人类沉默调节蛋白SIRT1 - SIRT3和SIRT6的酰基选择性之间的相互关系。稳态和快速淬灭动力学分析表明,NAD⁺饱和度和对烟酰胺抑制的敏感性差异反映了每个沉默调节蛋白所表现出的独特动力学行为,并且取决于酰基底物链长度。尽管2'-羟基对C1'-O - 烷基酰亚胺中间体的亲核攻击速率随酰基底物链长度而变化,但这一步骤对SIRT2和SIRT3来说仍然是速率决定步骤;然而,对于SIRT6而言,这一步骤对于长链底物不再是限速步骤。SIRT2与肉豆蔻酰化肽和NAD⁺的共结晶产生了一个与反应产物2'-O - 肉豆蔻酰 - ADP - 核糖的共复合物结构,揭示了一个潜在的疏水腔以容纳长链酰基,并暗示了长链脱酰基的一般机制。比较两个分别测定的包含肉豆蔻酰化肽或2'-O - 肉豆蔻酰 - ADP - 核糖的共复合物结构表明,在肉豆蔻酰 - 核糖连接处存在构象变化,而酶活性位点的结构差异最小。在脱酰基反应过程中,脂肪酰基保持在相对固定的位置。我们描述了一个动力学和结构模型,以解释各种沉默调节蛋白如何表现出独特的酰基底物偏好,以及不同的反应动力学如何影响对NAD⁺的依赖性。并讨论了其生物学意义。

相似文献

1
Kinetic and Structural Basis for Acyl-Group Selectivity and NAD(+) Dependence in Sirtuin-Catalyzed Deacylation.
Biochemistry. 2015 May 19;54(19):3037-3050. doi: 10.1021/acs.biochem.5b00150. Epub 2015 May 4.
2
Activation of the protein deacetylase SIRT6 by long-chain fatty acids and widespread deacylation by mammalian sirtuins.
J Biol Chem. 2013 Oct 25;288(43):31350-6. doi: 10.1074/jbc.C113.511261. Epub 2013 Sep 18.
3
Mechanism of activation for the sirtuin 6 protein deacylase.
J Biol Chem. 2020 Jan 31;295(5):1385-1399. doi: 10.1074/jbc.RA119.011285. Epub 2019 Dec 10.
5
Sirt5 deacylation activities show differential sensitivities to nicotinamide inhibition.
PLoS One. 2012;7(9):e45098. doi: 10.1371/journal.pone.0045098. Epub 2012 Sep 19.
6
Alternate deacylating specificities of the archaeal sirtuins Sir2Af1 and Sir2Af2.
Protein Sci. 2014 Dec;23(12):1686-97. doi: 10.1002/pro.2546. Epub 2014 Oct 1.
8
Crystal structures of SIRT3 reveal that the α2-α3 loop and α3-helix affect the interaction with long-chain acyl lysine.
FEBS Lett. 2016 Sep;590(17):3019-28. doi: 10.1002/1873-3468.12345. Epub 2016 Aug 24.
9
Investigating the Sensitivity of NAD+-dependent Sirtuin Deacylation Activities to NADH.
J Biol Chem. 2016 Mar 25;291(13):7128-41. doi: 10.1074/jbc.M115.668699. Epub 2016 Feb 9.

引用本文的文献

2
Structural basis for sirtuin 2 activity and modulation: Current state and opportunities.
J Biol Chem. 2025 May 22;301(7):110274. doi: 10.1016/j.jbc.2025.110274.
3
Efficient Crystallization of Apo Sirt2 for Small-Molecule Soaking and Structural Analysis of Ligand Interactions.
J Med Chem. 2025 Jun 12;68(11):10771-10780. doi: 10.1021/acs.jmedchem.4c02896. Epub 2025 May 20.
4
SIRT7 Is a Lysine Deacylase with a Preference for Depropionylation and Demyristoylation.
Int J Mol Sci. 2025 Mar 28;26(7):3153. doi: 10.3390/ijms26073153.
5
Role of SIRT3 in the regulation of Gadd45α expression and DNA repair in β-cells.
J Biol Chem. 2025 Mar 25;301(5):108451. doi: 10.1016/j.jbc.2025.108451.
6
Fragment Screening Reveals Novel Scaffolds against Sirtuin-2-Related Protein 1 from .
ACS Omega. 2024 Dec 27;10(4):3808-3819. doi: 10.1021/acsomega.4c09231. eCollection 2025 Feb 4.
8
NAD metabolism in acute kidney injury and chronic kidney disease transition.
Trends Mol Med. 2025 Jul;31(7):669-681. doi: 10.1016/j.molmed.2024.12.004. Epub 2025 Jan 4.
9
Drugs Targeting Sirtuin 2 Exhibit Broad-Spectrum Anti-Infective Activity.
Pharmaceuticals (Basel). 2024 Sep 29;17(10):1298. doi: 10.3390/ph17101298.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
3
NAD+ and sirtuins in aging and disease.
Trends Cell Biol. 2014 Aug;24(8):464-71. doi: 10.1016/j.tcb.2014.04.002. Epub 2014 Apr 29.
4
Nonenzymatic protein acylation as a carbon stress regulated by sirtuin deacylases.
Mol Cell. 2014 Apr 10;54(1):5-16. doi: 10.1016/j.molcel.2014.03.027.
5
Lysine glutarylation is a protein posttranslational modification regulated by SIRT5.
Cell Metab. 2014 Apr 1;19(4):605-17. doi: 10.1016/j.cmet.2014.03.014.
6
Acetylation dynamics and stoichiometry in Saccharomyces cerevisiae.
Mol Syst Biol. 2014 Jan 30;10(1):716. doi: 10.1002/msb.134766. Print 2014.
7
Structural basis for potent inhibition of SIRT2 deacetylase by a macrocyclic peptide inducing dynamic structural change.
Structure. 2014 Feb 4;22(2):345-52. doi: 10.1016/j.str.2013.12.001. Epub 2014 Jan 2.
8
Activation of the protein deacetylase SIRT6 by long-chain fatty acids and widespread deacylation by mammalian sirtuins.
J Biol Chem. 2013 Oct 25;288(43):31350-6. doi: 10.1074/jbc.C113.511261. Epub 2013 Sep 18.
9
Acetyl-phosphate is a critical determinant of lysine acetylation in E. coli.
Mol Cell. 2013 Jul 25;51(2):265-72. doi: 10.1016/j.molcel.2013.06.003. Epub 2013 Jul 3.
10
SIRT6 regulates TNF-α secretion through hydrolysis of long-chain fatty acyl lysine.
Nature. 2013 Apr 4;496(7443):110-3. doi: 10.1038/nature12038.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验