Feldman Jessica L, Dittenhafer-Reed Kristin E, Kudo Norio, Thelen Julie N, Ito Akihiro, Yoshida Minoru, Denu John M
Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53715.
Seed Compounds Exploratory Unit for Drug Discovery Platform, RIKEN Center for Sustainable Resource Science, Hirosawa 2-1, Wako, Saitama 351-0198, Japan.
Biochemistry. 2015 May 19;54(19):3037-3050. doi: 10.1021/acs.biochem.5b00150. Epub 2015 May 4.
Acylation of lysine is an important protein modification regulating diverse biological processes. It was recently demonstrated that members of the human Sirtuin family are capable of catalyzing long chain deacylation, in addition to the well-known NAD(+)-dependent deacetylation activity [Feldman, J. L., Baeza, J., and Denu, J. M. (2013) J. Biol. Chem. 288, 31350-31356]. Here we provide a detailed kinetic and structural analysis that describes the interdependence of NAD(+)-binding and acyl-group selectivity for a diverse series of human Sirtuins, SIRT1-SIRT3 and SIRT6. Steady-state and rapid-quench kinetic analyses indicated that differences in NAD(+) saturation and susceptibility to nicotinamide inhibition reflect unique kinetic behavior displayed by each Sirtuin and depend on acyl substrate chain length. Though the rate of nucleophilic attack of the 2'-hydroxyl on the C1'-O-alkylimidate intermediate varies with acyl substrate chain length, this step remains rate-determining for SIRT2 and SIRT3; however, for SIRT6, this step is no longer rate-limiting for long chain substrates. Cocrystallization of SIRT2 with myristoylated peptide and NAD(+) yielded a co-complex structure with reaction product 2'-O-myristoyl-ADP-ribose, revealing a latent hydrophobic cavity to accommodate the long chain acyl group, and suggesting a general mechanism for long chain deacylation. Comparing two separately determined co-complex structures containing either a myristoylated peptide or 2'-O-myristoyl-ADP-ribose indicates there are conformational changes at the myristoyl-ribose linkage with minimal structural differences in the enzyme active site. During the deacylation reaction, the fatty acyl group is held in a relatively fixed position. We describe a kinetic and structural model to explain how various Sirtuins display unique acyl substrate preferences and how different reaction kinetics influence NAD(+) dependence. The biological implications are discussed.
赖氨酸的酰化是一种调节多种生物过程的重要蛋白质修饰。最近有研究表明,人类沉默调节蛋白(Sirtuin)家族成员除了具有众所周知的依赖烟酰胺腺嘌呤二核苷酸(NAD⁺)的去乙酰化活性外,还能够催化长链脱酰基反应[费尔德曼,J. L.,贝扎,J.,和德努,J. M.(2013年)《生物化学杂志》288卷,31350 - 31356页]。在此,我们提供了详细的动力学和结构分析,描述了NAD⁺结合与一系列不同的人类沉默调节蛋白SIRT1 - SIRT3和SIRT6的酰基选择性之间的相互关系。稳态和快速淬灭动力学分析表明,NAD⁺饱和度和对烟酰胺抑制的敏感性差异反映了每个沉默调节蛋白所表现出的独特动力学行为,并且取决于酰基底物链长度。尽管2'-羟基对C1'-O - 烷基酰亚胺中间体的亲核攻击速率随酰基底物链长度而变化,但这一步骤对SIRT2和SIRT3来说仍然是速率决定步骤;然而,对于SIRT6而言,这一步骤对于长链底物不再是限速步骤。SIRT2与肉豆蔻酰化肽和NAD⁺的共结晶产生了一个与反应产物2'-O - 肉豆蔻酰 - ADP - 核糖的共复合物结构,揭示了一个潜在的疏水腔以容纳长链酰基,并暗示了长链脱酰基的一般机制。比较两个分别测定的包含肉豆蔻酰化肽或2'-O - 肉豆蔻酰 - ADP - 核糖的共复合物结构表明,在肉豆蔻酰 - 核糖连接处存在构象变化,而酶活性位点的结构差异最小。在脱酰基反应过程中,脂肪酰基保持在相对固定的位置。我们描述了一个动力学和结构模型,以解释各种沉默调节蛋白如何表现出独特的酰基底物偏好,以及不同的反应动力学如何影响对NAD⁺的依赖性。并讨论了其生物学意义。