López-Estepa Miguel, Ardá Ana, Savko Martin, Round Adam, Shepard William E, Bruix Marta, Coll Miquel, Fernández Francisco J, Jiménez-Barbero Jesús, Vega M Cristina
Chemical and Physical Biology, Center for Biological Research (CIB-CSIC), Madrid, Spain.
Chemical and Physical Biology, Center for Biological Research (CIB-CSIC), Madrid, Spain; Structural Biology, CIC bioGUNE, Derio-Bizkaia, Spain.
PLoS One. 2015 Apr 21;10(4):e0118606. doi: 10.1371/journal.pone.0118606. eCollection 2015.
Cyclic N6-threonylcarbamoyladenosine ('cyclic t6A', ct(6)A) is a non-thiolated hypermodification found in transfer RNAs (tRNAs) in bacteria, protists, fungi and plants. In bacteria and yeast cells ct(6)A has been shown to enhance translation fidelity and efficiency of ANN codons by improving the faithful discrimination of aminoacylated tRNAs by the ribosome. To further the understanding of ct(6)A biology we have determined the high-resolution crystal structures of CsdL/TcdA in complex with AMP and ATP, an E1-like activating enzyme from Escherichia coli, which catalyzes the ATP-dependent dehydration of t6A to form ct(6)A. CsdL/TcdA is a dimer whose structural integrity and dimer interface depend critically on strongly bound K+ and Na+ cations. By using biochemical assays and small-angle X-ray scattering we show that CsdL/TcdA can associate with tRNA with a 1:1 stoichiometry and with the proper position and orientation for the cyclization of t6A. Furthermore, we show by nuclear magnetic resonance that CsdL/TcdA engages in transient interactions with CsdA and CsdE, which, in the latter case, involve catalytically important residues. These short-lived interactions may underpin the precise channeling of sulfur atoms from cysteine to CsdL/TcdA as previously characterized. In summary, the combination of structural, biophysical and biochemical methods applied to CsdL/TcdA has afforded a more thorough understanding of how the structure of this E1-like enzyme has been fine tuned to accomplish ct(6)A synthesis on tRNAs while providing support for the notion that CsdA and CsdE are able to functionally interact with CsdL/TcdA.
环状N6-苏氨甲酰腺苷(“环状t6A”,ct(6)A)是在细菌、原生生物、真菌和植物的转运RNA(tRNA)中发现的一种非硫醇化超修饰。在细菌和酵母细胞中,ct(6)A已被证明可通过提高核糖体对氨酰化tRNA的准确识别来增强ANN密码子的翻译保真度和效率。为了进一步了解ct(6)A的生物学特性,我们确定了与AMP和ATP结合的CsdL/TcdA的高分辨率晶体结构,CsdL/TcdA是一种来自大肠杆菌的类E1激活酶,它催化t6A的ATP依赖性脱水反应以形成ct(6)A。CsdL/TcdA是一种二聚体,其结构完整性和二聚体界面严重依赖于紧密结合的K+和Na+阳离子。通过生化分析和小角X射线散射,我们表明CsdL/TcdA可以以1:1的化学计量比与tRNA结合,并具有t6A环化所需的正确位置和方向。此外,我们通过核磁共振表明CsdL/TcdA与CsdA和CsdE发生短暂相互作用,在后一种情况下,涉及具有催化重要性的残基。这些短暂的相互作用可能是先前表征的从半胱氨酸到CsdL/TcdA的硫原子精确通道化的基础。总之,应用于CsdL/TcdA的结构、生物物理和生化方法相结合,使我们对这种类E1酶的结构如何被精细调节以在tRNA上完成ct(6)A合成有了更全面的了解,同时为CsdA和CsdE能够与CsdL/TcdA进行功能相互作用的观点提供了支持。