Ariza-Carmona Luisa, Rubia-Payá Carlos, García-Espejo G, Martín-Romero María T, Giner-Casares Juan J, Camacho Luis
Institute of Fine Chemistry and Nanochemistry, Department of Physical Chemistry and Applied Thermodynamics, University of Córdoba, Campus Universitario de Rabanales, Edificio Marie Curie, Córdoba, Spain E-14014.
Langmuir. 2015 May 19;31(19):5333-44. doi: 10.1021/acs.langmuir.5b00175. Epub 2015 May 4.
Polydiacetylene (PDA) and its derivatives are promising materials for applications in a vast number of fields, from organic electronics to biosensing. PDA is obtained through polymerization of diacetylene (DA) monomers, typically using UV irradiation. DA polymerization is a 1-4 addition reaction with both initiation and growth steps with topochemical control, leading to the "blue" polymer form as primary reaction product in bulk and at interfaces. Herein, the diacetylene monomer 10,12-pentacosadiynoic acid (DA) and the amphiphilic cationic N,N'-dioctadecylthiapentacarbocyanine (OTCC) have been used to build a mixed Langmuir monolayer. The presence of OTCC imposes a monolayer supramolecular structure instead of the typical trilayer of pure DA. Surface pressure, Brewster angle microscopy, and UV-vis reflection spectroscopy measurements, as well as computer simulations, have been used to assess in detail the supramolecular structure of the DA:OTCC Langmuir monolayer. Our experimental results indicate that the DA and OTCC molecules are sequentially arranged, with the two OTCC alkyl chains acting as spacing diacetylene units. Despite this configuration is expected to prevent photopolymerization of DA, the polymerization takes place without phase segregation, thus exclusively leading to the red polydiacetylene form. We propose a simple model for the initial formation of the "blue" or "red" PDA forms as a function of the relative orientation of the DA units. The structural insights and the proposed model concerning the supramolecular structure of the "blue" and "red" forms of the PDA are aimed at the understanding of the relation between the molecular and macroscopical features of PDAs.
聚二乙炔(PDA)及其衍生物是一类很有前景的材料,可应用于从有机电子学到生物传感等众多领域。PDA是通过二乙炔(DA)单体聚合得到的,通常采用紫外线照射。DA聚合是一种1,4加成反应,具有引发和生长步骤,并受拓扑化学控制,在本体和界面处主要反应产物为“蓝色”聚合物形式。在此,二乙炔单体10,12-二十五碳二炔酸(DA)与两亲性阳离子N,N'-二辛基硫代五甲川菁(OTCC)被用于构建混合朗缪尔单分子层。OTCC的存在导致形成单分子层超分子结构,而非纯DA典型的三分子层结构。通过表面压力、布鲁斯特角显微镜、紫外-可见反射光谱测量以及计算机模拟,已详细评估了DA:OTCC朗缪尔单分子层的超分子结构。我们的实验结果表明,DA和OTCC分子依次排列,两个OTCC烷基链起到间隔二乙炔单元的作用。尽管这种构型预计会阻止DA的光聚合,但聚合反应仍在无相分离的情况下发生,从而仅生成红色聚二乙炔形式。我们提出了一个简单模型,用于解释“蓝色”或“红色”PDA形式的初始形成与DA单元相对取向的关系。关于PDA“蓝色”和“红色”形式超分子结构的结构见解及所提出的模型,旨在理解PDA分子特征与宏观特征之间的关系。