Petersen Ines, Gabryszewski Stanislaw J, Johnston Geoffrey L, Dhingra Satish K, Ecker Andrea, Lewis Rebecca E, de Almeida Mariana Justino, Straimer Judith, Henrich Philipp P, Palatulan Eugene, Johnson David J, Coburn-Flynn Olivia, Sanchez Cecilia, Lehane Adele M, Lanzer Michael, Fidock David A
Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, 10032, USA.
Hygiene Institut, Abteilung Parasitologie, Universitätsklinikum Heidelberg, 69120, Heidelberg, Germany.
Mol Microbiol. 2015 Jul;97(2):381-95. doi: 10.1111/mmi.13035. Epub 2015 May 20.
The widespread use of chloroquine to treat Plasmodium falciparum infections has resulted in the selection and dissemination of variant haplotypes of the primary resistance determinant PfCRT. These haplotypes have encountered drug pressure and within-host competition with wild-type drug-sensitive parasites. To examine these selective forces in vitro, we genetically engineered P. falciparum to express geographically diverse PfCRT haplotypes. Variant alleles from the Philippines (PH1 and PH2, which differ solely by the C72S mutation) both conferred a moderate gain of chloroquine resistance and a reduction in growth rates in vitro. Of the two, PH2 showed higher IC50 values, contrasting with reduced growth. Furthermore, a highly mutated pfcrt allele from Cambodia (Cam734) conferred moderate chloroquine resistance and enhanced growth rates, when tested against wild-type pfcrt in co-culture competition assays. These three alleles mediated cross-resistance to amodiaquine, an antimalarial drug widely used in Africa. Each allele, along with the globally prevalent Dd2 and 7G8 alleles, rendered parasites more susceptible to lumefantrine, the partner drug used in the leading first-line artemisinin-based combination therapy. These data reveal ongoing region-specific evolution of PfCRT that impacts drug susceptibility and relative fitness in settings of mixed infections, and raise important considerations about optimal agents to treat chloroquine-resistant malaria.
氯喹广泛用于治疗恶性疟原虫感染,导致主要耐药决定因素PfCRT的变异单倍型被选择和传播。这些单倍型面临药物压力以及与野生型药物敏感寄生虫的宿主体内竞争。为了在体外研究这些选择压力,我们对恶性疟原虫进行基因工程改造,使其表达地理上不同的PfCRT单倍型。来自菲律宾的变异等位基因(PH1和PH2,仅在C72S突变上存在差异)均赋予了中度的氯喹耐药性增加,并降低了体外生长速率。在这两个等位基因中,PH2显示出更高的IC50值,但生长却有所降低。此外,在共培养竞争试验中,当与野生型pfcrt进行测试时,来自柬埔寨的高度突变的pfcrt等位基因(Cam734)赋予了中度氯喹耐药性并提高了生长速率。这三个等位基因介导了对阿莫地喹的交叉耐药性,阿莫地喹是在非洲广泛使用的一种抗疟药物。每个等位基因,连同全球流行的Dd2和7G8等位基因,使寄生虫对双氢青蒿素更敏感,双氢青蒿素是一线青蒿素联合疗法中使用的辅助药物。这些数据揭示了PfCRT正在进行的区域特异性进化,这种进化在混合感染情况下会影响药物敏感性和相对适应性,并引发了关于治疗氯喹耐药疟疾的最佳药物的重要思考。