Kim A-Young, Seo Jong Bok, Kim Won-Tae, Choi Hee Jeong, Kim Soo-Young, Morrow Genevieve, Tanguay Robert M, Steller Hermann, Koh Young Ho
ILSONG Institute of Life Science, Hallym University, 1605-4 Gwanyangdong, Dongan-gu, Anyang, Gyeonggido, 431-060, Republic of Korea.
Department of Biomedical Gerontology, Graduate School of Hallym University, Chuncheon, Gangwon-do, 200-702, Republic of Korea.
BMC Genomics. 2015 Apr 23;16(1):338. doi: 10.1186/s12864-015-1518-0.
Dystonia1 (DYT1) dystonia is caused by a glutamic acid deletion (ΔE) mutation in the gene encoding Torsin A in humans (HTorA). To investigate the unknown molecular and cellular mechanisms underlying DYT1 dystonia, we performed an unbiased proteomic analysis.
We found that the amount of proteins and transcripts of an Endoplasmic reticulum (ER) resident chaperone Heat shock protein cognate 3 (HSC3) and a mitochondria chaperone Heat Shock Protein 22 (HSP22) were significantly increased in the HTorA(ΔE)- expressing brains compared to the normal HTorA (HTorA(WT)) expressing brains. The physiological consequences included an increased susceptibility to oxidative and ER stress compared to normal HTorA(WT) flies. The alteration of transcripts of Inositol-requiring enzyme-1 (IRE1)-dependent spliced X box binding protein 1(Xbp1), several ER chaperones, a nucleotide exchange factor, Autophagy related protein 8b (ATG8b) and components of the ER associated degradation (ERAD) pathway and increased expression of the Xbp1-enhanced Green Fluorescence Protein (eGFP) in HTorA(ΔE) brains strongly indicated the activation of the unfolded protein response (UPR). In addition, perturbed expression of the UPR sensors and inducers in the HTorA(ΔE) Drosophila brains resulted in a significantly reduced life span of the flies. Furthermore, the types and quantities of proteins present in the anti-HSC3 positive microsomes in the HTorA(ΔE) brains were different from those of the HTorA(WT) brains.
Taken together, these data show that HTorA(ΔE) in Drosophila brains may activate the UPR and increase the expression of HSP22 to compensate for the toxic effects caused by HTorA(ΔE) in the brains.
肌张力障碍1(DYT1)型肌张力障碍是由人类(HTorA)中编码Torsin A的基因发生谷氨酸缺失(ΔE)突变所致。为了探究DYT1型肌张力障碍潜在的未知分子和细胞机制,我们进行了一项无偏倚的蛋白质组学分析。
我们发现,与表达正常HTorA(HTorA(WT))的大脑相比,在表达HTorA(ΔE)的大脑中,内质网(ER)驻留伴侣热休克蛋白同源物3(HSC3)和线粒体伴侣热休克蛋白22(HSP22)的蛋白质和转录本数量显著增加。生理后果包括与正常HTorA(WT)果蝇相比,对氧化应激和内质网应激的易感性增加。肌醇需求酶1(IRE1)依赖性剪接的X盒结合蛋白1(Xbp1)、几种内质网伴侣、一种核苷酸交换因子、自噬相关蛋白8b(ATG8b)以及内质网相关降解(ERAD)途径成分的转录本改变,以及HTorA(ΔE)大脑中Xbp1增强型绿色荧光蛋白(eGFP)表达增加,强烈表明未折叠蛋白反应(UPR)被激活。此外,HTorA(ΔE)果蝇大脑中UPR传感器和诱导剂的表达受到干扰,导致果蝇寿命显著缩短。此外,HTorA(ΔE)大脑中抗HSC3阳性微粒体中存在的蛋白质类型和数量与HTorA(WT)大脑不同。
综上所述,这些数据表明果蝇大脑中的HTorA(ΔE)可能激活UPR并增加HSP22的表达,以补偿HTorA(ΔE)在大脑中引起的毒性作用。