School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, Luoyu Road 1037, Wuhan 430074, PR China.
Dalton Trans. 2015 May 21;44(19):9182-92. doi: 10.1039/c4dt03993a.
Redox-inactive metal ions can modulate the reactivity of redox-active metal ions in a variety of biological and chemical oxidations. Many synthetic models have been developed to help address the elusive roles of these redox-inactive metal ions. Using a non-heme manganese(II) complex as the model, the influence of redox-inactive metal ions as a Lewis acid on its catalytic efficiency in oxygen atom transfer was investigated. In the absence of redox-inactive metal ions, the manganese(II) catalyst is very sluggish, for example, in cyclooctene epoxidation, providing only 9.9% conversion with 4.1% yield of epoxide. However, addition of 2 equiv. of Al(3+) to the manganese(II) catalyst sharply improves the epoxidation, providing up to 97.8% conversion with 91.4% yield of epoxide. EPR studies of the manganese(II) catalyst in the presence of an oxidant reveal a 16-line hyperfine structure centered at g = 2.0, clearly indicating the formation of a mixed valent di-μ-oxo-bridged diamond core, Mn(III)-(μ-O)2-Mn(IV). The presence of a Lewis acid like Al(3+) causes the dissociation of this diamond Mn(III)-(μ-O)2-Mn(IV) core to form monomeric manganese(iv) species which is responsible for improved epoxidation efficiency. This promotional effect has also been observed in other manganese complexes bearing various non-heme ligands. The findings presented here have provided a promising strategy to explore the catalytic reactivity of some di-μ-oxo-bridged complexes by adding non-redox metal ions to in situ dissociate those dimeric cores and may also provide clues to understand the mechanism of methane monooxygenase which has a similar diiron diamond core as the intermediate.
氧化还原惰性金属离子可以调节氧化还原活性金属离子在各种生物和化学氧化中的反应性。已经开发了许多合成模型来帮助解决这些氧化还原惰性金属离子难以捉摸的作用。使用非血红素锰(II)配合物作为模型,研究了氧化还原惰性金属离子作为路易斯酸对其在氧原子转移中的催化效率的影响。在没有氧化还原惰性金属离子的情况下,锰(II)催化剂非常缓慢,例如在环辛烯环氧化中,仅提供 9.9%的转化率和 4.1%的环氧化物收率。然而,向锰(II)催化剂中添加 2 当量的 Al(3+)可大大提高环氧化,提供高达 97.8%的转化率和 91.4%的环氧化物收率。在氧化剂存在下对锰(II)催化剂的 EPR 研究表明,在 g = 2.0 处存在一个 16 线超精细结构,清楚地表明形成了混合价二μ-氧桥联金刚石核,Mn(III)-(μ-O)2-Mn(IV)。路易斯酸如 Al(3+)的存在导致该金刚石 Mn(III)-(μ-O)2-Mn(IV)核的解离,形成负责提高环氧化效率的单体锰(IV)物种。这种促进作用也在其他具有各种非血红素配体的锰配合物中观察到。这里提出的发现为通过向原位添加非氧化还原金属离子来探索一些二μ-氧桥接配合物的催化反应性提供了一种有前途的策略,并且可能也为理解甲烷单加氧酶的机制提供了线索,该酶具有与中间体相似的二铁金刚石核。