Suppr超能文献

神经网络基序的可观测性

Observability of Neuronal Network Motifs.

作者信息

Whalen Andrew J, Brennan Sean N, Sauer Timothy D, Schiff Steven J

机构信息

Center for Neural Engineering, Penn State University, University Park, PA 16802.

Department of Mechanical Engineering, Penn State University, University Park, PA 16802.

出版信息

Proc Conf Inf Sci Syst. 2012 Mar;2012. doi: 10.1109/CISS.2012.6310923.

Abstract

We quantify observability in small (3 node) neuronal networks as a function of 1) the connection topology and symmetry, 2) the measured nodes, and 3) the nodal dynamics (linear and nonlinear). We find that typical observability metrics for 3 neuron motifs range over several orders of magnitude, depending upon topology, and for motifs containing symmetry the network observability decreases when observing from particularly confounded nodes. Nonlinearities in the nodal equations generally decrease the average network observability and full network information becomes available only in limited regions of the system phase space. Our findings demonstrate that such networks are partially observable, and suggest their potential efficacy in reconstructing network dynamics from limited measurement data. How well such strategies can be used to reconstruct and control network dynamics in experimental settings is a subject for future experimental work.

摘要

我们将小型(3节点)神经元网络中的可观测性量化为以下因素的函数:1)连接拓扑结构和对称性;2)被测量节点;3)节点动力学(线性和非线性)。我们发现,3神经元基序的典型可观测性指标范围跨越几个数量级,这取决于拓扑结构,并且对于包含对称性的基序,当从特别混淆的节点进行观测时,网络可观测性会降低。节点方程中的非线性通常会降低平均网络可观测性,并且只有在系统相空间的有限区域中才能获得完整的网络信息。我们的研究结果表明,此类网络是部分可观测的,并暗示了它们在从有限测量数据重建网络动力学方面的潜在功效。在实验环境中,这些策略在多大程度上能够用于重建和控制网络动力学,是未来实验工作的一个主题。

相似文献

1
Observability of Neuronal Network Motifs.
Proc Conf Inf Sci Syst. 2012 Mar;2012. doi: 10.1109/CISS.2012.6310923.
2
Observability and Controllability of Nonlinear Networks: The Role of Symmetry.
Phys Rev X. 2015 Jan-Mar;5(1). doi: 10.1103/PhysRevX.5.011005. Epub 2015 Jan 23.
3
Particle filtering of dynamical networks: Highlighting observability issues.
Chaos. 2019 Mar;29(3):033118. doi: 10.1063/1.5085321.
4
Analysis and application of neuronal network controllability and observability.
Chaos. 2017 Feb;27(2):023103. doi: 10.1063/1.4975124.
5
Nonlinear graph-based theory for dynamical network observability.
Phys Rev E. 2018 Aug;98(2-1):020303. doi: 10.1103/PhysRevE.98.020303.
6
Observability and synchronization of neuron models.
Chaos. 2017 Oct;27(10):103103. doi: 10.1063/1.4985291.
7
Reconstructing network topology and coupling strengths in directed networks of discrete-time dynamics.
Phys Rev E. 2017 Feb;95(2-1):022311. doi: 10.1103/PhysRevE.95.022311. Epub 2017 Feb 24.
8
Structural, dynamical and symbolic observability: From dynamical systems to networks.
PLoS One. 2018 Oct 31;13(10):e0206180. doi: 10.1371/journal.pone.0206180. eCollection 2018.
9
A symbolic network-based nonlinear theory for dynamical systems observability.
Sci Rep. 2018 Feb 28;8(1):3785. doi: 10.1038/s41598-018-21967-w.
10
Observability Transitions in Networks with Betweenness Preference.
PLoS One. 2016 Jun 14;11(6):e0156764. doi: 10.1371/journal.pone.0156764. eCollection 2016.

本文引用的文献

1
Data assimilation for heterogeneous networks: the consensus set.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 May;79(5 Pt 1):051909. doi: 10.1103/PhysRevE.79.051909. Epub 2009 May 13.
2
Impulses and Physiological States in Theoretical Models of Nerve Membrane.
Biophys J. 1961 Jul;1(6):445-66. doi: 10.1016/s0006-3495(61)86902-6.
3
Relation between observability and differential embeddings for nonlinear dynamics.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Jun;71(6 Pt 2):066213. doi: 10.1103/PhysRevE.71.066213. Epub 2005 Jun 23.
4
A quantitative description of membrane current and its application to conduction and excitation in nerve.
J Physiol. 1952 Aug;117(4):500-44. doi: 10.1113/jphysiol.1952.sp004764.
6
Network motifs: simple building blocks of complex networks.
Science. 2002 Oct 25;298(5594):824-7. doi: 10.1126/science.298.5594.824.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验