在植物类异戊二烯生物合成早期步骤的调控方面开辟新领域。

Breaking new ground in the regulation of the early steps of plant isoprenoid biosynthesis.

作者信息

Rodríguez-Concepción Manuel, Boronat Albert

机构信息

Program of Plant Metabolism and Metabolic Engineering, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, E-08193, Barcelona, Spain.

Program of Plant Metabolism and Metabolic Engineering, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, E-08193, Barcelona, Spain; Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain.

出版信息

Curr Opin Plant Biol. 2015 Jun;25:17-22. doi: 10.1016/j.pbi.2015.04.001. Epub 2015 Apr 21.

Abstract

The common metabolic precursors used for the production of all isoprenoid compounds are synthesized by two unrelated pathways in plants. The methylerythritol 4-phosphate (MEP) pathway produces these precursors in the plastid, whereas the biosynthesis of non-plastidial isoprenoids relies on the operation of the mevalonic acid (MVA) pathway. Despite the physical separation of the two pathways, some interaction exists at molecular and metabolic levels. Recent results have provided strong evidence that a high degree of control over each individual pathway takes place at the post-translational level. In particular, new mechanisms regulating the levels and activity of rate-determining enzymes have been unveiled. Current challenges include the study of the subcellular operation of the MEP and MVA pathways and their coordination with upstream and downstream pathways that supply their substrates and consume their products.

摘要

用于合成所有类异戊二烯化合物的常见代谢前体是通过植物中两条不相关的途径合成的。甲基赤藓糖醇4-磷酸(MEP)途径在质体中产生这些前体,而非质体类异戊二烯的生物合成则依赖于甲羟戊酸(MVA)途径的运作。尽管这两条途径在物理上是分开的,但在分子和代谢水平上存在一些相互作用。最近的研究结果提供了强有力的证据,表明在翻译后水平上对每个单独途径进行了高度控制。特别是,已经揭示了调节限速酶水平和活性的新机制。当前的挑战包括研究MEP和MVA途径的亚细胞运作及其与提供底物和消耗产物的上游和下游途径的协调。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索