Bodei Chiara, Bortolussi Luca, Chiarugi Davide, Guerriero Maria Luisa, Policriti Alberto, Romanel Alessandro
Dip. di Informatica, Università di Pisa, Italy.
Dip. di Matematica e Geoscienze, Università di Trieste, Italy; CNR-ISTI, Pisa, Italy; Modelling and Simulation Group, University of Saarland, Campus E 1 3, Saarbruecken, Germany.
Comput Biol Chem. 2015 Jun;56:98-108. doi: 10.1016/j.compbiolchem.2015.04.004. Epub 2015 Apr 8.
In this paper, we explore the impact of different forms of model abstraction and the role of discreteness on the dynamical behaviour of a simple model of gene regulation where a transcriptional repressor negatively regulates its own expression. We first investigate the relation between a minimal set of parameters and the system dynamics in a purely discrete stochastic framework, with the twofold purpose of providing an intuitive explanation of the different behavioural patterns exhibited and of identifying the main sources of noise. Then, we explore the effect of combining hybrid approaches and quasi-steady state approximations on model behaviour (and simulation time), to understand to what extent dynamics and quantitative features such as noise intensity can be preserved.
在本文中,我们探讨了不同形式的模型抽象的影响以及离散性在一个简单的基因调控模型动力学行为中的作用,在该模型中,转录抑制因子对其自身表达进行负调控。我们首先在纯离散随机框架下研究一组最小参数与系统动力学之间的关系,目的有二:一是对所展示的不同行为模式提供直观解释,二是识别噪声的主要来源。然后,我们探究结合混合方法和准稳态近似对模型行为(以及模拟时间)的影响,以了解在何种程度上可以保留动力学和诸如噪声强度等定量特征。