Stróż Kazimierz
Faculty of Computer Science and Material Sciences, University of Silesia, Katowice, Poland.
Acta Crystallogr A Found Adv. 2015 May;71(Pt 3):268-78. doi: 10.1107/S2053273315001096. Epub 2015 Mar 12.
The main result of this work is extension of the famous characterization of Bravais lattices according to their metrical, algebraic and geometric properties onto a wide class of primitive lattices (including Buerger-reduced, nearly Buerger-reduced and a substantial part of Delaunay-reduced) related to low-restricted semi-reduced descriptions (s.r.d.'s). While the geometric' operations in Bravais lattices map the basis vectors into themselves, the arithmetic' operators in s.r.d. transform the basis vectors into cell vectors (basis vectors, face or space diagonals) and are represented by matrices from the set {\bb V} of all 960 matrices with the determinant ±1 and elements {0, ±1} of the matrix powers. A lattice is in s.r.d. if the moduli of off-diagonal elements in both the metric tensors M and M(-1) are smaller than corresponding diagonal elements sharing the same column or row. Such lattices are split into 379 s.r.d. types relative to the arithmetic holohedries. Metrical criteria for each type do not need to be explicitly given but may be modelled as linear derivatives {\bb M}(p,q,r), where {\bb M} denotes the set of 39 highest-symmetry metric tensors, and p,q,r describe changes of appropriate interplanar distances. A sole filtering of {\bb V} according to an experimental s.r.d. metric and subsequent geometric interpretation of the filtered matrices lead to mathematically stable and rich information on the Bravais-lattice symmetry and deviations from the exact symmetry. The emphasis on the crystallographic features of lattices was obtained by shifting the focus (i) from analysis of a lattice metric to analysis of symmetry matrices [Himes & Mighell (1987). Acta Cryst. A43, 375-384], (ii) from the isometric approach and invariant subspaces to the orthogonality concept {some ideas in Le Page [J. Appl. Cryst. (1982), 15, 255-259]} and splitting indices [Stróż (2011). Acta Cryst. A67, 421-429] and (iii) from fixed cell transformations to transformations derivable via geometric information (Himes & Mighell, 1987; Le Page, 1982). It is illustrated that corresponding arithmetic and geometric holohedries share space distribution of symmetry elements. Moreover, completeness of the s.r.d. types reveals their combinatorial structure and simplifies the crystallographic description of structural phase transitions, especially those observed with the use of powder diffraction. The research proves that there are excellent theoretical and practical reasons for looking at crystal lattice symmetry from an entirely new and surprising point of view - the combinatorial set {\bb V} of matrices, their semi-reduced lattice context and their geometric properties.
这项工作的主要成果是,将根据布拉菲晶格的度量、代数和几何性质对其进行的著名表征,扩展到与低受限半约化描述(s.r.d.)相关的一大类原始晶格(包括布尔格约化晶格、近布尔格约化晶格以及德劳内约化晶格的很大一部分)。在布拉菲晶格中,“几何”运算将基矢映射为自身,而在s.r.d.中的“算术”算子则将基矢转换为晶胞矢量(基矢、面或空间对角线),并由所有行列式为±1且矩阵幂元素为{0, ±1}的960个矩阵组成的集合{\bb V}中的矩阵表示。如果度量张量M和M(-1)中非对角元素的模小于共享同一列或行的相应对角元素,则晶格处于s.r.d.状态。相对于算术全形,此类晶格可分为379种s.r.d.类型。每种类型的度量标准无需明确给出,但可建模为线性导数{\bb M}(p,q,r),其中{\bb M}表示39个最高对称度量张量的集合,p、q、r描述适当晶面间距的变化。根据实验s.r.d.度量对{\bb V}进行单一筛选,随后对筛选后的矩阵进行几何解释,可得到关于布拉菲晶格对称性以及与精确对称性偏差的数学上稳定且丰富的信息。通过将重点(i)从晶格度量分析转移到对称矩阵分析[Himes & Mighell (1987). Acta Cryst. A43, 375 - 384],(ii)从等距方法和不变子空间转移到正交性概念{Le Page [J. Appl. Cryst. (1982), 15, 255 - 259]中的一些想法}和分裂指数[Stróż (2011). Acta Cryst. A67, 421 - 429],以及(iii)从固定晶胞变换转移到可通过几何信息推导的变换(Himes & Mighell, 1987; Le Page, 1982),突出了晶格的晶体学特征。结果表明,相应的算术和几何全形共享对称元素的空间分布。此外,s.r.d.类型的完整性揭示了它们的组合结构,并简化了结构相变的晶体学描述,特别是那些通过粉末衍射观察到的相变。该研究证明,从一个全新且令人惊讶的角度——矩阵的组合集{\bb V}、它们的半约化晶格背景及其几何性质——审视晶格对称性具有极好的理论和实际理由。