Shindel Matthew M, Furst Eric M
University of Delaware, Chemical and Biomolecular Engineering, Center for Molecular and Engineering Thermodynamics, 150 Academy St., Newark, Delaware, USA.
Lab Chip. 2015 Jun 7;15(11):2460-6. doi: 10.1039/c5lc00351b. Epub 2015 Apr 30.
Coupling analog frequency modulation (FM) to the driving stimulus in active microrheology measurements conducted with optical tweezers effectively parallelizes numerous single-frequency experiments. Consequently, frequency modulated microrheology (FMMR) can efficiently characterize the dynamic stress response of complex fluids over several frequency decades in a single experiment. The time required to complete an FMMR measurement scales with the lowest frequency probed, improving throughput over the serial frequency sweep approach. The ease of implementation, straight-forward data analysis and rapidity of FMMR offer particular utility toward applications such as characterization of non-equilibrium materials, automated microrheology instrumentation, high-throughput screening of biomaterials and (bio) pharmaceutical formulations, and in situ monitoring of chemical and biochemical reaction processes.
在使用光镊进行的主动微流变测量中,将模拟频率调制(FM)与驱动刺激相结合,有效地使众多单频实验并行化。因此,调频微流变学(FMMR)能够在单个实验中高效地表征复杂流体在几个频率 decade 范围内的动态应力响应。完成一次 FMMR 测量所需的时间与探测到的最低频率成比例,相较于串行频率扫描方法提高了通量。FMMR 的易于实施、直接的数据分析和快速性,对于非平衡材料的表征、自动化微流变仪器、生物材料和(生物)药物制剂的高通量筛选以及化学和生化反应过程的原位监测等应用具有特别的效用。