Thomas Martin, Huck Nicola, Hoehenwarter Wolfgang, Conrath Uwe, Beckers Gerold J M
Plant Biochemistry and Molecular Biology Group, Department of Plant Physiology, RWTH Aachen University, Worringer Weg 1, Aachen, 52074, Germany.
Methods Mol Biol. 2015;1306:81-96. doi: 10.1007/978-1-4939-2648-0_6.
In eukaryotic cells many diverse cellular functions are regulated by reversible protein phosphorylation. In recent years, phosphoproteomics has become a powerful tool for studying protein phosphorylation because it enables unbiased localization, and site-specific quantification of in vivo phosphorylation of hundreds of proteins in a single experiment. A common strategy for identifying phosphoproteins and their phosphorylation sites from complex biological samples is the enrichment of phosphopeptides from digested cellular lysates followed by mass spectrometry. However, despite high sensitivity of modern mass spectrometers the large dynamic range of protein abundance and the transient nature of protein phosphorylation remained major pitfalls in MS-based phosphoproteomics. This is particularly true for plants in which the presence of secondary metabolites and endogenous compounds, the overabundance of ribulose-1,5-bisphosphate carboxylase and other components of the photosynthetic apparatus, and the concurrent difficulties in protein extraction necessitate two-step phosphoprotein/phosphopeptide enrichment strategies (Nakagami et al., Plant Cell Physiol 53:118-124, 2012).Approaches for label-free peptide quantification are advantageous due to their low cost and experimental simplicity, but they lack precision. These drawbacks can be overcome by metabolic labeling of whole plants with heavy nitrogen ((15)N) which allows combining two samples very early in the phosphoprotein enrichment workflow. This avoids sample-to-sample variation introduced by the analytical procedures and it results in robust relative quantification values that need no further standardization. The integration of (15)N metabolic labeling into tandem metal-oxide affinity chromatography (MOAC) (Hoehenwarter et al., Mol Cell Proteomics 12:369-380, 2013) presents an improved and highly selective approach for the identification and accurate site-specific quantification of low-abundance phosphoproteins that is based on the successive enrichment of light and heavy nitrogen-labeled phosphoproteins and peptides. This improved strategy combines metabolic labeling of whole plants with the stable heavy nitrogen isotope ((15)N), protein extraction under denaturing conditions, phosphoprotein enrichment using Al(OH)3-based MOAC, and tryptic digest of enriched phosphoproteins followed by TiO2-based MOAC of phosphopeptides and quantitative phosphopeptide measurement by liquid chromatography (LC) and high-resolution accurate mass (HR/AM) mass spectrometry (MS). Thus, tandem MOAC effectively targets the phosphate moiety of phosphoproteins and phosphopeptides and allows probing of the phosphoproteome to unprecedented depth, while (15)N metabolic labeling enables accurate relative quantification of measured peptides and direct comparison between samples.
在真核细胞中,许多不同的细胞功能受可逆性蛋白质磷酸化调控。近年来,磷酸化蛋白质组学已成为研究蛋白质磷酸化的有力工具,因为它能在单次实验中对数百种蛋白质的体内磷酸化进行无偏差定位和位点特异性定量。从复杂生物样品中鉴定磷酸化蛋白质及其磷酸化位点的常用策略是从消化后的细胞裂解物中富集磷酸肽,随后进行质谱分析。然而,尽管现代质谱仪灵敏度很高,但蛋白质丰度的大动态范围以及蛋白质磷酸化的瞬时性质仍是基于质谱的磷酸化蛋白质组学的主要缺陷。对于植物而言尤其如此,因为植物中存在次生代谢物和内源性化合物、核糖-1,5-二磷酸羧化酶及光合装置的其他成分过多,以及蛋白质提取同时存在困难,这就需要两步磷酸化蛋白质/磷酸肽富集策略(中神等人,《植物细胞生理学》53:118 - 124,2012年)。无标记肽定量方法因其成本低和实验简单而具有优势,但缺乏精确性。通过用重氮(¹⁵N)对整株植物进行代谢标记可以克服这些缺点,这允许在磷酸化蛋白质富集工作流程的早期就将两个样品合并。这避免了分析程序引入的样品间差异,并产生无需进一步标准化的可靠相对定量值。将¹⁵N代谢标记整合到串联金属氧化物亲和色谱(MOAC)中(赫恩瓦特尔等人,《分子与细胞蛋白质组学》12:369 - 380,2013年),提出了一种改进的、高度选择性的方法,用于鉴定和准确定位低丰度磷酸化蛋白质的位点特异性定量,该方法基于对轻氮和重氮标记的磷酸化蛋白质及肽的连续富集。这种改进策略将整株植物的代谢标记与稳定的重氮同位素(¹⁵N)、变性条件下的蛋白质提取、基于Al(OH)₃的MOAC进行磷酸化蛋白质富集、对富集的磷酸化蛋白质进行胰蛋白酶消化,随后对磷酸肽进行基于TiO₂的MOAC以及通过液相色谱(LC)和高分辨率精确质量(HR/AM)质谱(MS)进行定量磷酸肽测量相结合。因此,串联MOAC有效地靶向磷酸化蛋白质和磷酸肽的磷酸基团,并允许对磷酸化蛋白质组进行前所未有的深度探测,而¹⁵N代谢标记能够对测量的肽进行精确的相对定量以及样品间的直接比较。