Suppr超能文献

烧伤死亡率风险预测:逻辑回归与机器学习方法的比较

Mortality risk prediction in burn injury: Comparison of logistic regression with machine learning approaches.

作者信息

Stylianou Neophytos, Akbarov Artur, Kontopantelis Evangelos, Buchan Iain, Dunn Ken W

机构信息

Centre for Health Informatics, Institute of Population Health, University of Manchester, UK.

Centre for Health Informatics, Institute of Population Health, University of Manchester, UK.

出版信息

Burns. 2015 Aug;41(5):925-34. doi: 10.1016/j.burns.2015.03.016. Epub 2015 Apr 27.

Abstract

INTRODUCTION

Predicting mortality from burn injury has traditionally employed logistic regression models. Alternative machine learning methods have been introduced in some areas of clinical prediction as the necessary software and computational facilities have become accessible. Here we compare logistic regression and machine learning predictions of mortality from burn.

METHODS

An established logistic mortality model was compared to machine learning methods (artificial neural network, support vector machine, random forests and naïve Bayes) using a population-based (England & Wales) case-cohort registry. Predictive evaluation used: area under the receiver operating characteristic curve; sensitivity; specificity; positive predictive value and Youden's index.

RESULTS

All methods had comparable discriminatory abilities, similar sensitivities, specificities and positive predictive values. Although some machine learning methods performed marginally better than logistic regression the differences were seldom statistically significant and clinically insubstantial. Random forests were marginally better for high positive predictive value and reasonable sensitivity. Neural networks yielded slightly better prediction overall. Logistic regression gives an optimal mix of performance and interpretability.

DISCUSSION

The established logistic regression model of burn mortality performs well against more complex alternatives. Clinical prediction with a small set of strong, stable, independent predictors is unlikely to gain much from machine learning outside specialist research contexts.

摘要

引言

传统上,预测烧伤死亡率采用逻辑回归模型。随着必要的软件和计算设施变得可用,替代机器学习方法已在临床预测的某些领域中引入。在此,我们比较逻辑回归和机器学习对烧伤死亡率的预测。

方法

使用基于人群(英格兰和威尔士)的病例队列登记系统,将已建立的逻辑死亡率模型与机器学习方法(人工神经网络、支持向量机、随机森林和朴素贝叶斯)进行比较。预测评估使用:受试者操作特征曲线下面积;敏感性;特异性;阳性预测值和尤登指数。

结果

所有方法都具有相当的区分能力、相似的敏感性、特异性和阳性预测值。虽然一些机器学习方法的表现略优于逻辑回归,但差异很少具有统计学意义且在临床上微不足道。随机森林在高阳性预测值和合理敏感性方面略胜一筹。神经网络总体上产生了稍好的预测。逻辑回归在性能和可解释性之间提供了最佳平衡。

讨论

已建立的烧伤死亡率逻辑回归模型在面对更复杂的替代方法时表现良好。在非专业研究背景下,使用一小套强大、稳定、独立的预测因子进行临床预测不太可能从机器学习中获得太多收益。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验