Wu Jianhui, Wang Yuji, Wang Yaonan, Zhao Ming, Zhang Xiaoyi, Gui Lin, Zhao Shurui, Zhu Haimei, Zhao Jinghua, Peng Shiqi
Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences, Capital Medical University, Beijing, People's Republic of China.
Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences, Capital Medical University, Beijing, People's Republic of China ; Faculty of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan.
Int J Nanomedicine. 2015 Apr 15;10:2925-38. doi: 10.2147/IJN.S76691. eCollection 2015.
Thrombosis disease has been the leading cause of morbidity and mortality worldwide. In the discovery of antithrombotic agents, three complexes of Cu(2+) and repetitive arginine-glycine-aspartic acid (RGD) sequences, Cu(II)-Arg-Gly-Asp-Ser-Arg-Gly-Asp-Ser (Cu[II]-4a), Cu(II)-Arg-Gly-Asp-Val-Arg-Gly-Asp-Val (Cu[II]-4b), and Cu(II)-Arg-Gly-Asp-Phe-Arg-Gly-Asp-Phe (Cu[II]-4c), were previously reported, of which Cu(II)-4a and Cu(II)-4c possessed the highest in vitro and in vivo activity, respectively. Transmission electron microscopy (TEM) images visualized that Cu(II)-4a and Cu(II)-4c formed nanoaggregates and nanoparticles, respectively. However, the details of the formation of the nanospecies complexes and of the mechanism for inhibiting thrombosis remain to be clarified. For this purpose, this study designed a novel complex of Cu(II) and the RGD octapeptide, Arg-Gly-Asp-Phe-Arg-Gly-Asp-Ser (RGDFRGDS), consisting of Arg-Gly-Asp-Phe of Cu(II)-4c and Arg-Gly-Asp-Ser of Cu(II)-4a, to colligate their biological and nanostructural benefits. In contrast with Cu(II)-4a, -4b, and -4c, Cu(II)-RGDFRGDS (Cu(2+)-FS) had high antiplatelet and antithrombotic activities, with the formed nanoparticles having a porous surface. Additionally, this paper evidenced the dimer had the basic structural unit of Cu(2+)-FS in water, theoretically simulated the formation of Cu(2+)-FS nanoparticles, and identified that Cu(2+)-FS activity in decreasing glycoprotein IIb/IIIa, P-selectin, and IL-8 was responsible for the antithrombotic action. Finally, adherence onto the surface and entry into the cytoplasm were considered the steps of a two-step model for the blocking of platelet activation by Cu(2+)-FS nanoparticles. Findings indicated that the antiplatelet aggregation activity of Cu(2+)-FS was 10-52 times higher than that of RGDFRGDS, while the effective dose for antithrombotic action was 5,000 times lower than that of RGDFRGDS.
血栓形成疾病一直是全球发病和死亡的主要原因。在抗血栓药物的研发过程中,先前已报道了三种铜(II)与重复的精氨酸 - 甘氨酸 - 天冬氨酸(RGD)序列形成的配合物,即铜(II)-精氨酸 - 甘氨酸 - 天冬氨酸 - 丝氨酸 - 精氨酸 - 甘氨酸 - 天冬氨酸 - 丝氨酸(Cu[II]-4a)、铜(II)-精氨酸 - 甘氨酸 - 天冬氨酸 - 缬氨酸 - 精氨酸 - 甘氨酸 - 天冬氨酸 - 缬氨酸(Cu[II]-4b)和铜(II)-精氨酸 - 甘氨酸 - 天冬氨酸 - 苯丙氨酸 - 精氨酸 - 甘氨酸 - 天冬氨酸 - 苯丙氨酸(Cu[II]-4c),其中Cu(II)-4a和Cu(II)-4c分别具有最高的体外和体内活性。透射电子显微镜(TEM)图像显示,Cu(II)-4a和Cu(II)-4c分别形成了纳米聚集体和纳米颗粒。然而,纳米物种配合物的形成细节以及抑制血栓形成的机制仍有待阐明。为此,本研究设计了一种新型的铜(II)与RGD八肽精氨酸 - 甘氨酸 - 天冬氨酸 - 苯丙氨酸 - 精氨酸 - 甘氨酸 - 天冬氨酸 - 丝氨酸(RGDFRGDS)形成的配合物,它由Cu(II)-4c的精氨酸 - 甘氨酸 - 天冬氨酸 - 苯丙氨酸和Cu(II)-4a的精氨酸 - 甘氨酸 - 天冬氨酸 - 丝氨酸组成,以综合它们的生物学和纳米结构优势。与Cu(II)-4a、-4b和-4c相比,Cu(II)-RGDFRGDS(Cu(2+)-FS)具有较高的抗血小板和抗血栓活性,形成的纳米颗粒具有多孔表面。此外,本文证明二聚体是Cu(2+)-FS在水中的基本结构单元,从理论上模拟了Cu(2+)-FS纳米颗粒的形成,并确定Cu(2+)-FS降低糖蛋白IIb/IIIa、P-选择素和白细胞介素-8的活性是其抗血栓作用的原因。最后,吸附到表面和进入细胞质被认为是Cu(2+)-FS纳米颗粒阻断血小板活化的两步模型中的步骤。研究结果表明,Cu(2+)-FS的抗血小板聚集活性比RGDFRGDS高10 - 52倍,而抗血栓作用的有效剂量比RGDFRGDS低5000倍。