Suppr超能文献

仿人机器人的 BSN 动态行走模仿。

Imitation of Dynamic Walking With BSN for Humanoid Robot.

出版信息

IEEE J Biomed Health Inform. 2015 May;19(3):794-802. doi: 10.1109/JBHI.2015.2425221. Epub 2015 Apr 28.

Abstract

Humanoid robots have been used in a wide range of applications including entertainment, healthcare, and assistive living. In these applications, the robots are expected to perform a range of natural body motions, which can be either preprogrammed or learnt from human demonstration. This paper proposes a strategy for imitating dynamic walking gait for a humanoid robot by formulating the problem as an optimization process. The human motion data are recorded with an inertial sensor-based motion tracking system (Biomotion+). Joint angle trajectories are obtained from the transformation of the estimated posture. Key locomotion frames corresponding to gait events are chosen from the trajectories. Due to differences in joint structures of the human and robot, the joint angles at these frames need to be optimized to satisfy the physical constraints of the robot while preserving robot stability. Interpolation among the optimized angles is needed to generate continuous angle trajectories. The method is validated using a NAO humanoid robot, with results demonstrating the effectiveness of the proposed strategy for dynamic walking.

摘要

仿人机器人在娱乐、医疗和辅助生活等广泛领域得到了应用。在这些应用中,机器人需要执行各种自然的身体动作,可以通过预编程或从人类演示中学习。本文提出了一种通过将问题表述为优化过程来模仿仿人机器人动态行走步态的策略。人类运动数据通过基于惯性传感器的运动跟踪系统(Biomotion+)进行记录。从估计的姿势转换中获得关节角度轨迹。从轨迹中选择对应步态事件的关键运动帧。由于人体和机器人的关节结构存在差异,需要优化这些帧处的关节角度,以满足机器人的物理约束,同时保持机器人的稳定性。需要对优化后的角度进行插值,以生成连续的角度轨迹。该方法使用 NAO 仿人机器人进行了验证,结果表明,该方法对于动态行走是有效的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验