Suppr超能文献

利用手机为肺部疾病患者提供自然行走监测

A natural walking monitor for pulmonary patients using mobile phones.

出版信息

IEEE J Biomed Health Inform. 2015 Jul;19(4):1399-405. doi: 10.1109/JBHI.2015.2427511. Epub 2015 Apr 28.

Abstract

Mobile devices have the potential to continuously monitor health by collecting movement data including walking speed during natural walking. Natural walking is walking without artificial speed constraints present in both treadmill and nurse-assisted walking. Fitness trackers have become popular which record steps taken and distance, typically using a fixed stride length. While useful for everyday purposes, medical monitoring requires precise accuracy and testing on real patients with a scientifically valid measure. Walking speed is closely linked to morbidity in patients and widely used for medical assessment via measured walking. The 6-min walk test (6MWT) is a standard assessment for chronic obstructive pulmonary disease and congestive heart failure. Current generation smartphone hardware contains similar sensor chips as in medical devices and popular fitness devices. We developed a middleware software, MoveSense, which runs on standalone smartphones while providing comparable readings to medical accelerometers. We evaluate six machine learning methods to obtain gait speed during natural walking training models to predict natural walking speed and distance during a 6MWT with 28 pulmonary patients and ten subjects without pulmonary condition. We also compare our model's accuracy to popular fitness devices. Our universally trained support vector machine models produce 6MWT distance with 3.23% error during a controlled 6MWT and 11.2% during natural free walking. Furthermore, our model attains 7.9% error when tested on five subjects for distance estimation compared to the 50-400% error seen in fitness devices during natural walking.

摘要

移动设备通过收集运动数据(包括自然行走时的行走速度),具有持续监测健康的潜力。自然行走是指在没有跑步机和护士辅助行走时的人工速度限制的情况下进行的行走。健身追踪器越来越受欢迎,它们可以记录步数和距离,通常使用固定的步长。虽然对于日常用途很有用,但医疗监测需要精确的准确性,并在真实患者身上进行科学有效的测试。行走速度与患者的发病率密切相关,广泛用于通过测量行走进行医学评估。6 分钟步行测试(6MWT)是慢性阻塞性肺疾病和充血性心力衰竭的标准评估方法。当前一代智能手机硬件包含与医疗设备和流行健身设备中类似的传感器芯片。我们开发了一个中间件软件 MoveSense,它可以在独立的智能手机上运行,同时提供与医疗加速度计相当的读数。我们评估了六种机器学习方法,以获得自然行走训练模型中的步态速度,以预测 28 名肺病患者和 10 名无肺病患者在 6MWT 中的自然行走速度和距离。我们还将我们的模型的准确性与流行的健身设备进行了比较。我们普遍训练的支持向量机模型在受控的 6MWT 中产生 6MWT 距离的 3.23%误差,在自然自由行走中产生 11.2%的误差。此外,我们的模型在五个受试者的距离估计测试中达到了 7.9%的误差,而在自然行走中,健身设备的误差范围为 50-400%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验