†ICN2-Institut Catala de Nanociencia i Nanotecnologia, Campus UAB, Bellaterra, 08193 Barcelona, Spain.
‡Universidad Autónoma de Barcelona, Bellaterra, 08193 Barcelona, Spain.
Nano Lett. 2015 Jun 10;15(6):4000-5. doi: 10.1021/acs.nanolett.5b00922. Epub 2015 May 12.
We investigate hot carrier propagation across graphene using an electrical nonlocal injection/detection method. The device consists of a monolayer graphene flake contacted by multiple metal leads. Using two remote leads for electrical heating, we generate a carrier temperature gradient that results in a measurable thermoelectric voltage V(NL) across the remaining (detector) leads. Due to the nonlocal character of the measurement, V(NL) is exclusively due to the Seebeck effect. Remarkably, a departure from the ordinary relationship between Joule power P and V(NL), V(NL) ∼ P, becomes readily apparent at low temperatures, representing a fingerprint of hot-carrier dominated thermoelectricity. By studying V(NL) as a function of bias, we directly determine the carrier temperature and the characteristic cooling length for hot-carrier propagation, which are key parameters for a variety of new applications that rely on hot-carrier transport.
我们使用电非局域注入/探测方法研究了横跨石墨烯的热载流子输运。该器件由单层石墨烯薄片通过多个金属引线接触组成。使用两个远程引线进行电加热,我们产生了一个载流子温度梯度,导致在其余(探测器)引线上产生可测量的温差电压 V(NL)。由于测量的非局域性质,V(NL)仅归因于塞贝克效应。值得注意的是,在低温下,明显偏离焦耳功率 P 与 V(NL)之间的普通关系,V(NL)∼P,这代表了热载流子主导热电的特征。通过研究 V(NL)作为偏压的函数,我们直接确定了载流子温度和热载流子传播的特征冷却长度,这是依赖于热载流子输运的各种新应用的关键参数。