School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana 47405, USA.
Department of Civil &Environmental Engineering, The University of Iowa, Iowa City, Iowa 52242, USA.
Nat Commun. 2015 May 8;6:7067. doi: 10.1038/ncomms8067.
Existing regulatory frameworks for aquatic pollutants in the United States are idealized, often lacking mechanisms to account for contaminants characterized by (1) bioactivity of both the parent and transformation products and (2) reversible transformations (that is, metastable products) driven by chemical or physical heterogeneities. Here, we modelled a newly discovered product-to-parent reversion pathway for trenbolone acetate (TBA) metabolites. We show increased exposure to the primary metabolite, 17α-trenbolone (17α-TBOH), and elevated concentrations of the still-bioactive primary photoproduct hydroxylated 17α-TBOH, produced via phototransformation and then converted back to 17α-trenbolone in perpetually dark hyporheic zones that exchange continuously with surface water photic zones. The increased persistence equates to a greater potential hazard from parent-product joint bioactivity at locations and times when reversion is a dominant trenbolone fate pathway. Our study highlights uncertainties and vulnerabilities with current paradigms in risk characterization.
现有的美国水生污染物监管框架过于理想化,通常缺乏机制来考虑具有以下特征的污染物:(1) 母体和转化产物均具有生物活性;(2) 由化学或物理非均相性驱动的可逆转化(即亚稳产物)。在这里,我们对醋酸群勃龙(TBA)代谢物的一种新发现的产物到母体的逆向转化途径进行了建模。我们发现,主要代谢物 17α-群勃龙(17α-TBOH)的暴露增加,并且通过光转化产生的仍然具有生物活性的初级光产物羟化 17α-TBOH 的浓度升高,然后在不断与地表水光区交换的永久性黑暗底层区中逆向转化回 17α-群勃龙。这种持久性的增加等同于在逆向转化是主要替勃龙命运途径的地点和时间,从母体-产物联合生物活性的角度来看,潜在危害更大。我们的研究强调了当前风险特征化范式中的不确定性和脆弱性。