Johnson P D, Yang H-B, Rameau J D, Gu G D, Pan Z-H, Valla T, Weinert M, Fedorov A V
Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA.
Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201, USA.
Phys Rev Lett. 2015 Apr 24;114(16):167001. doi: 10.1103/PhysRevLett.114.167001. Epub 2015 Apr 23.
High-resolution angle-resolved photoelectron spectroscopy is used to examine the electronic band structure of FeTe_{0.5}Se_{0.5} near the Brillouin zone center. A consistent separation of the α_{1} and α_{2} bands is observed with little k_{z} dependence of the α_{1} band. First-principles calculations for bulk and thin films demonstrate that the antiferromagnetic coupling between the Fe atoms and hybridization-induced spin-orbit effects lifts the degeneracy of the Fe d_{xz} and d_{yz} orbitals at the zone center leading to orbital ordering. These experimental and computational results provide a natural microscopic basis for the nematicity observed in the Fe-based superconductors.
高分辨率角分辨光电子能谱用于研究FeTe₀.₅Se₀.₅在布里渊区中心附近的电子能带结构。观察到α₁和α₂能带的一致分离,且α₁能带几乎与kz无关。对体材料和薄膜的第一性原理计算表明,Fe原子之间的反铁磁耦合以及杂化诱导的自旋轨道效应消除了区域中心处Fe dₓz和dᵧz轨道的简并性,导致轨道有序化。这些实验和计算结果为铁基超导体中观察到的向列性提供了自然的微观基础。