Suppr超能文献

带有反应扩散项的线性耦合神经网络同步的牵制控制策略。

Pinning Control Strategies for Synchronization of Linearly Coupled Neural Networks With Reaction-Diffusion Terms.

出版信息

IEEE Trans Neural Netw Learn Syst. 2016 Apr;27(4):749-61. doi: 10.1109/TNNLS.2015.2423853. Epub 2015 May 1.

Abstract

Two types of coupled neural networks with reaction-diffusion terms are considered in this paper. In the first one, the nodes are coupled through their states. In the second one, the nodes are coupled through the spatial diffusion terms. For the former, utilizing Lyapunov functional method and pinning control technique, we obtain some sufficient conditions to guarantee that network can realize synchronization. In addition, considering that the theoretical coupling strength required for synchronization may be much larger than the needed value, we propose an adaptive strategy to adjust the coupling strength for achieving a suitable value. For the latter, we establish a criterion for synchronization using the designed pinning controllers. It is found that the coupled reaction-diffusion neural networks with state coupling under the given linear feedback pinning controllers can realize synchronization when the coupling strength is very large, which is contrary to the coupled reaction-diffusion neural networks with spatial diffusion coupling. Moreover, a general criterion for ensuring network synchronization is derived by pinning a small fraction of nodes with adaptive feedback controllers. Finally, two examples with numerical simulations are provided to demonstrate the effectiveness of the theoretical results.

摘要

本文研究了两类具有反应扩散项的耦合神经网络。在第一种网络中,节点通过状态进行耦合;在第二种网络中,节点通过空间扩散项进行耦合。对于前者,利用李雅普诺夫泛函方法和钉扎控制技术,我们得到了一些充分条件,以保证网络能够实现同步。此外,考虑到实现同步所需的理论耦合强度可能远大于所需值,我们提出了一种自适应策略来调整耦合强度,以达到合适的值。对于后者,我们使用设计的钉扎控制器建立了同步的判据。结果表明,在给定的线性反馈钉扎控制器下,具有状态耦合的耦合反应扩散神经网络在耦合强度非常大的情况下可以实现同步,这与具有空间扩散耦合的耦合反应扩散神经网络相反。此外,通过使用自适应反馈控制器钉扎一小部分节点,推导出了一个保证网络同步的一般判据。最后,通过两个数值模拟的例子验证了理论结果的有效性。

相似文献

1
Pinning Control Strategies for Synchronization of Linearly Coupled Neural Networks With Reaction-Diffusion Terms.
IEEE Trans Neural Netw Learn Syst. 2016 Apr;27(4):749-61. doi: 10.1109/TNNLS.2015.2423853. Epub 2015 May 1.
2
Synchronization and adaptive control of an array of linearly coupled reaction-diffusion neural networks with hybrid coupling.
IEEE Trans Cybern. 2014 Aug;44(8):1350-61. doi: 10.1109/TCYB.2013.2283308. Epub 2013 Oct 7.
3
Passivity and Synchronization of Linearly Coupled Reaction-Diffusion Neural Networks With Adaptive Coupling.
IEEE Trans Cybern. 2015 Sep;45(9):1942-52. doi: 10.1109/TCYB.2014.2362655.
4
Synchronization control for nonlinear stochastic dynamical networks: pinning impulsive strategy.
IEEE Trans Neural Netw Learn Syst. 2012 Feb;23(2):285-92. doi: 10.1109/TNNLS.2011.2179312.
5
Novel adaptive strategies for synchronization of linearly coupled neural networks with reaction-diffusion terms.
IEEE Trans Neural Netw Learn Syst. 2014 Feb;25(2):429-40. doi: 10.1109/TNNLS.2013.2276086.
7
Adaptive pinning cluster synchronization of a stochastic reaction-diffusion complex network.
Neural Netw. 2023 Sep;166:524-540. doi: 10.1016/j.neunet.2023.07.034. Epub 2023 Aug 2.
8
Synchronization of nonlinear coupled networks via aperiodically intermittent pinning control.
IEEE Trans Neural Netw Learn Syst. 2015 Jan;26(1):113-26. doi: 10.1109/TNNLS.2014.2311838.
10
Robust H∞ Pinning Synchronization for Multiweighted Coupled Reaction-Diffusion Neural Networks.
IEEE Trans Cybern. 2023 Oct;53(10):6549-6561. doi: 10.1109/TCYB.2022.3223713. Epub 2023 Sep 15.

引用本文的文献

1
Stability and synchronization analysis of inertial memristive neural networks with time delays.
Cogn Neurodyn. 2016 Oct;10(5):437-51. doi: 10.1007/s11571-016-9392-2. Epub 2016 Jun 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验