Weisshaar Marco, Cox Robert, Plemper Richard K
Institute for Biomedical Sciences, Georgia State University , Atlanta, Georgia .
DNA Cell Biol. 2015 Aug;34(8):505-10. doi: 10.1089/dna.2015.2896. Epub 2015 May 11.
Respiratory syncytial virus (RSV) is responsible for majority of infant hospitalizations due to viral infections. Despite its clinical importance, no vaccine against RSV or effective antiviral therapy is available. Several structural classes of small-molecule RSV entry inhibitor have been described and one compound has advanced to clinical testing. Mutations in either one of two resistance hot spots in the F protein mediate unusual pan-resistance to all of these inhibitor classes. Based on the biochemical characterization of resistant viruses and structural insight into the RSV F trimer, we propose a kinetic escape model as the origin of pan-resistance. Since a resistant RSV remained pathogenic in the mouse model, pan-resistance mutations could emerge rapidly in circulating RSV strains. We evaluate clinical implications and discuss consequences for the design of future RSV drug discovery campaigns.
呼吸道合胞病毒(RSV)是导致大多数婴儿因病毒感染住院的原因。尽管其具有临床重要性,但目前尚无针对RSV的疫苗或有效的抗病毒疗法。已经描述了几类小分子RSV进入抑制剂,并且有一种化合物已进入临床试验阶段。F蛋白中两个耐药热点之一的突变介导了对所有这些抑制剂类别的异常泛耐药性。基于耐药病毒的生化特征和对RSV F三聚体的结构洞察,我们提出了一种动力学逃逸模型作为泛耐药性的起源。由于耐药的RSV在小鼠模型中仍具有致病性,因此泛耐药性突变可能在循环的RSV毒株中迅速出现。我们评估了临床意义,并讨论了对未来RSV药物研发活动设计的影响。