Zamora D A, Downs K P, Ullevig S L, Tavakoli S, Kim H S, Qiao M, Greaves D R, Asmis R
Department of Biology, Trinity University, San Antonio, USA.
Department of Clinical Laboratory Sciences, University of Texas Health Science Center at San Antonio, USA.
Atherosclerosis. 2015 Jul;241(1):69-78. doi: 10.1016/j.atherosclerosis.2015.04.805. Epub 2015 Apr 26.
Reactive oxygen species (ROS)-mediated formation of mixed disulfides between critical cysteine residues in proteins and glutathione, a process referred to as protein S-glutathionylation, can lead to loss of enzymatic activity and protein degradation. Since mitochondria are a major source of ROS and a number of their proteins are susceptible to protein-S-glutathionylation, we examined if overexpression of mitochondrial thioltranferase glutaredoxin 2a (Grx2a) in macrophages of dyslipidemic atherosclerosis-prone mice would prevent mitochondrial dysfunction and protect against atherosclerotic lesion formation.
We generated transgenic Grx2aMac(LDLR-/-) mice, which overexpress Grx2a as an EGFP fusion protein under the control of the macrophage-specific CD68 promoter. Transgenic mice and wild type siblings were fed a high fat diet for 14 weeks at which time we assessed mitochondrial bioenergetic function in peritoneal macrophages and atherosclerotic lesion formation. Flow cytometry and Western blot analysis demonstrated transgene expression in blood monocytes and peritoneal macrophages isolated from Grx2aMac(LDLR-/-) mice, and fluorescence confocal microscopy studies confirmed that Grx2a expression was restricted to the mitochondria of monocytic cells. Live-cell bioenergetic measurements revealed impaired mitochondrial ATP turnover in macrophages isolated from Grx2aMac(LDLR-/-) mice compared to macrophages isolated from non-transgenic mice. However, despite impaired mitochondrial function in macrophages of Grx2aMac(LDLR-/-) mice, we observed no significant difference in the severity of atherosclerosis between wildtype and Grx2aMac(LDLR-/-) mice.
Our findings suggest that increasing Grx2a activity in macrophage mitochondria disrupts mitochondrial respiration and ATP production, but without affecting the proatherogenic potential of macrophages. Our data suggest that macrophages are resistant against moderate mitochondrial dysfunction and rely on alternative pathways for ATP synthesis to support the energetic requirements.
活性氧(ROS)介导蛋白质中关键半胱氨酸残基与谷胱甘肽之间形成混合二硫键,这一过程称为蛋白质S-谷胱甘肽化,可导致酶活性丧失和蛋白质降解。由于线粒体是ROS的主要来源,且其许多蛋白质易受蛋白质S-谷胱甘肽化影响,我们研究了在易患血脂异常动脉粥样硬化小鼠的巨噬细胞中过表达线粒体硫醇转移酶谷氧还蛋白2a(Grx2a)是否能预防线粒体功能障碍并防止动脉粥样硬化病变形成。
我们构建了转基因Grx2aMac(LDLR-/-)小鼠,其在巨噬细胞特异性CD68启动子的控制下将Grx2a作为EGFP融合蛋白过表达。将转基因小鼠和野生型同窝小鼠喂食高脂饮食14周,此时我们评估腹腔巨噬细胞中的线粒体生物能量功能和动脉粥样硬化病变形成。流式细胞术和蛋白质印迹分析表明,从Grx2aMac(LDLR-/-)小鼠分离的血液单核细胞和腹腔巨噬细胞中有转基因表达,荧光共聚焦显微镜研究证实Grx2a表达局限于单核细胞的线粒体。活细胞生物能量测量显示,与从非转基因小鼠分离的巨噬细胞相比,从Grx2aMac(LDLR-/-)小鼠分离的巨噬细胞中线粒体ATP周转受损。然而,尽管Grx2aMac(LDLR-/-)小鼠的巨噬细胞中线粒体功能受损,但我们观察到野生型和Grx2aMac(LDLR-/-)小鼠之间动脉粥样硬化的严重程度没有显著差异。
我们的研究结果表明,增加巨噬细胞线粒体中的Grx2a活性会破坏线粒体呼吸和ATP产生,但不影响巨噬细胞的促动脉粥样硬化潜能。我们的数据表明,巨噬细胞对中度线粒体功能障碍具有抗性,并依赖替代途径进行ATP合成以满足能量需求。