Castle Jason W, Kent Kevin P, Fan Ying, Wallace Kirk D, Davis Cynthia E L, Roberts Jeannette C, Marino Michael E, Thomenius Kai E, Lim Hae W, Coles Eric, Davidson Michael H, Feinstein Steven B, DeMaria Anthony
General Electric Global Research, Niskayuna, NY, USA.
Formerly GE Global Research, Niskayuna, NY, USA.
Atherosclerosis. 2015 Jul;241(1):92-9. doi: 10.1016/j.atherosclerosis.2015.04.817. Epub 2015 May 5.
Low levels of HDL-C are an independent cardiovascular risk factor associated with increased premature cardiovascular death. However, HDL-C therapies historically have been limited by issues relating to immunogenicity, hepatotoxicity and scalability, and have been ineffective in clinical trials.
We examined the feasibility of using injectable acoustic microspheres to locally deliver human ApoA-I DNA plasmids in a pre-clinical model and quantify increased production of HDL-C in vivo.
Our novel site-specific gene delivery system was examined in naïve rat model and comprised the following steps: (1) intravenous co-administration of a solution containing acoustically active microspheres (Optison™, GE Healthcare, Princeton, New Jersey) and human ApoA-I plasmids; (2) ultrasound verification of the presence of the microspheres within the liver vasculature; (3) External application of locally-directed acoustic energy, (4) induction of microsphere disruption and in situ sonoporation; (4) ApoA-I plasmid hepatic uptake; (5) transcription and expression of human ApoA-I protein; and (6) elevation of serum HDL-C.
Co-administration of ApoA-I plasmids and acoustic microspheres, activated by external ultrasound energy, resulted in transcription and production of human ApoA-I protein and elevated serum HDL-C in rats (up to 61%; p-value < 0.05).
HDL-C was increased in rats following ultrasound directed delivery of human ApoA-I plasmids by microsphere sonoporation. The present method provides a novel approach to promote ApoA-I synthesis and nascent HDL-C elevation, potentially permitting the use of a minimally-invasive ultrasound-based, gene delivery system for treating individuals with low HDL-C.
高密度脂蛋白胆固醇(HDL-C)水平低是一种独立的心血管危险因素,与心血管过早死亡风险增加相关。然而,历史上HDL-C疗法一直受到免疫原性、肝毒性和可扩展性等问题的限制,并且在临床试验中效果不佳。
我们在临床前模型中研究了使用可注射声学微球局部递送人载脂蛋白A-I(ApoA-I)DNA质粒的可行性,并量化体内HDL-C生成的增加情况。
我们在未经处理的大鼠模型中研究了我们的新型位点特异性基因递送系统,该系统包括以下步骤:(1)静脉内共同给予含有声学活性微球(Optison™,通用电气医疗集团,新泽西州普林斯顿)和人ApoA-I质粒的溶液;(2)超声验证肝脏血管系统内微球的存在;(3)局部施加定向声能;(4)诱导微球破裂和原位声穿孔;(4)ApoA-I质粒肝脏摄取;(5)人ApoA-I蛋白的转录和表达;(6)血清HDL-C升高。
ApoA-I质粒与声学微球共同给药,并由外部超声能量激活,导致大鼠体内人ApoA-I蛋白的转录和产生以及血清HDL-C升高(高达61%;p值<0.05)。
通过微球声穿孔超声定向递送人ApoA-I质粒后,大鼠体内的HDL-C升高。本方法提供了一种促进ApoA-I合成和新生HDL-C升高的新方法,有可能允许使用基于超声的微创基因递送系统来治疗HDL-C水平低的个体。