Johnson Grant E, Olivares Astrid, Hill David, Laskin Julia
Physical Sciences Division, Pacific Northwest National Laboratory, P. O. Box 999, MSIN K8-88, Richland, Washington 99352, USA.
Phys Chem Chem Phys. 2015 Jun 14;17(22):14636-46. doi: 10.1039/c5cp01686j.
We present a systematic study of the effect of the number of methyl (Me) and cyclohexyl (Cy) functional groups in monodentate phosphine ligands on the solution-phase synthesis of ligated sub-nanometer gold clusters and their gas-phase fragmentation pathways. Small mixed ligand cationic gold clusters were synthesized using reactions between pre-formed triphenylphosphine ligated (PPh3) gold clusters and monodentate Me- and Cy-substituted phosphine ligands in solution and characterized using electrospray ionization mass spectrometry (ESI-MS) and collision-induced dissociation (CID) experiments. Under the same experimental conditions, larger gold-PPh3 clusters undergo efficient exchange of unsubstituted PPh3 ligands for singly Me- and Cy-substituted PPh2Me and PPh2Cy ligands. The efficiency of reaction decreases with an increasing number of Me or Cy groups in the substituted phosphine ligands. CID experiments performed for a series of mixed-ligand gold clusters indicate that loss of a neutral Me-substituted ligand is preferred over loss of a neutral PPh3 ligand while the opposite trend is observed for Cy-substituted ligands. The branching ratio of the competing ligand loss channels is strongly correlated with the electron donating ability of the phosphorous lone pair as determined by the relative proton affinity of the ligand. The results indicate that the relative ligand binding energies increase in the order PMe3 < PPhMe2 < PPh2Me < PPh3 < PPh2Cy < PPhCy2 < PCy3. Furthermore, the difference in relative ligand binding energies increases with the number of substituted PPh(3-m)Me(m) or PPh(3-m)Cy(m) ligands (L) on each cluster. This study provides the first experimental determination of the relative binding energies of ligated gold clusters containing differently substituted monophosphine ligands, which are important to controlling their synthesis and reactivity in solution. The results also indicate that ligand substitution is an important parameter that must be considered in theoretical modeling of these complex systems.
我们对单齿膦配体中甲基(Me)和环己基(Cy)官能团的数量对连接的亚纳米金簇的溶液相合成及其气相碎裂途径的影响进行了系统研究。使用预先形成的三苯基膦连接(PPh3)的金簇与溶液中的单齿Me-和Cy-取代的膦配体之间的反应合成了小的混合配体阳离子金簇,并使用电喷雾电离质谱(ESI-MS)和碰撞诱导解离(CID)实验对其进行了表征。在相同的实验条件下,较大的金-PPh3簇会有效地将未取代的PPh3配体交换为单Me-和Cy-取代的PPh2Me和PPh2Cy配体。反应效率随着取代膦配体中Me或Cy基团数量的增加而降低。对一系列混合配体金簇进行的CID实验表明,中性Me-取代配体的损失比中性PPh3配体的损失更优先,而对于Cy-取代配体则观察到相反的趋势。竞争配体损失通道的分支比与由配体的相对质子亲和力确定的磷孤对的给电子能力密切相关。结果表明,相对配体结合能按PMe3 < PPhMe2 < PPh2Me < PPh3 < PPh2Cy < PPhCy2 < PCy3的顺序增加。此外,每个簇上取代的PPh(3-m)Me(m)或PPh(3-m)Cy(m)配体(L)的数量增加时,相对配体结合能的差异也会增加。这项研究首次通过实验确定了含有不同取代单膦配体的连接金簇的相对结合能,这对于控制它们在溶液中的合成和反应性很重要。结果还表明,配体取代是这些复杂系统的理论建模中必须考虑的一个重要参数。