Suppr超能文献

整群随机试验中缺失数据的统计分析与处理:系统评价方案

Statistical analysis and handling of missing data in cluster randomised trials: protocol for a systematic review.

作者信息

Fiero Mallorie, Huang Shuang, Bell Melanie L

机构信息

Division of Epidemiology and Biostatistics, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, Arizona, USA.

出版信息

BMJ Open. 2015 May 13;5(5):e007378. doi: 10.1136/bmjopen-2014-007378.

Abstract

INTRODUCTION

Cluster randomised trials (CRTs) randomise participants in groups, rather than as individuals, and are key tools used to assess interventions in health research where treatment contamination is likely or if individual randomisation is not feasible. Missing outcome data can reduce power in trials, including in CRTs, and is a potential source of bias. The current review focuses on evaluating methods used in statistical analysis and handling of missing data with respect to the primary outcome in CRTs.

METHODS AND ANALYSIS

We will search for CRTs published between August 2013 and July 2014 using PubMed, Web of Science and PsycINFO. We will identify relevant studies by screening titles and abstracts, and examining full-text articles based on our predefined study inclusion criteria. 86 studies will be randomly chosen to be included in our review. Two independent reviewers will collect data from each study using a standardised, prepiloted data extraction template. Our findings will be summarised and presented using descriptive statistics.

ETHICS AND DISSEMINATION

This methodological systematic review does not need ethical approval because there are no data used in our study that are linked to individual patient data. After completion of this systematic review, data will be immediately analysed, and findings will be disseminated through a peer-reviewed publication and conference presentation.

摘要

引言

整群随机试验(CRTs)将参与者按组进行随机分组,而非个体随机分组,是用于评估健康研究中干预措施的关键工具,这些研究中可能存在治疗污染问题,或者个体随机分组不可行。缺失的结局数据会降低试验效能,包括整群随机试验,并且是潜在的偏倚来源。本综述重点评估整群随机试验中关于主要结局的统计分析和缺失数据处理所使用的方法。

方法与分析

我们将使用PubMed、科学网和PsycINFO检索2013年8月至2014年7月发表的整群随机试验。我们将通过筛选标题和摘要,并根据预先定义的研究纳入标准审查全文文章来识别相关研究。将随机选择86项研究纳入我们的综述。两名独立的评审员将使用标准化的、预先试点的数据提取模板从每项研究中收集数据。我们的研究结果将使用描述性统计进行总结和呈现。

伦理与传播

本方法学系统综述无需伦理批准,因为我们的研究中未使用与个体患者数据相关的数据。完成本系统综述后,将立即对数据进行分析,研究结果将通过同行评审出版物和会议报告进行传播。

相似文献

10
Screening strategies for hypertension: a systematic review protocol.
BMJ Open. 2019 Jan 15;9(1):e025043. doi: 10.1136/bmjopen-2018-025043.

引用本文的文献

1
Review of Recent Methodological Developments in Group-Randomized Trials: Part 2-Analysis.
Am J Public Health. 2017 Jul;107(7):1078-1086. doi: 10.2105/AJPH.2017.303707. Epub 2017 May 18.

本文引用的文献

1
Handling missing data in RCTs; a review of the top medical journals.
BMC Med Res Methodol. 2014 Nov 19;14:118. doi: 10.1186/1471-2288-14-118.
2
Are missing data adequately handled in cluster randomised trials? A systematic review and guidelines.
Clin Trials. 2014 Oct;11(5):590-600. doi: 10.1177/1740774514537136. Epub 2014 Jun 5.
3
A comparison of imputation strategies in cluster randomized trials with missing binary outcomes.
Stat Methods Med Res. 2016 Dec;25(6):2650-2669. doi: 10.1177/0962280214530030. Epub 2014 Apr 7.
4
Practical and statistical issues in missing data for longitudinal patient-reported outcomes.
Stat Methods Med Res. 2014 Oct;23(5):440-59. doi: 10.1177/0962280213476378. Epub 2013 Feb 19.
6
Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement.
PLoS Med. 2009 Jul 21;6(7):e1000097. doi: 10.1371/journal.pmed.1000097.
8
Internal and external validity of cluster randomised trials: systematic review of recent trials.
BMJ. 2008 Apr 19;336(7649):876-80. doi: 10.1136/bmj.39517.495764.25. Epub 2008 Mar 25.
10
Developments in cluster randomized trials and Statistics in Medicine.
Stat Med. 2007 Jan 15;26(1):2-19. doi: 10.1002/sim.2731.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验