LeBel C P, Schatz R A
Toxicology Program, Northeastern University, Boston, MA 02115.
Biochem Pharmacol. 1989 Nov 15;38(22):4005-11. doi: 10.1016/0006-2952(89)90680-1.
This study investigated the effects of toluene (1 g/kg, 1 hr, i.p.) on rat synaptosomal phospholipid methylation (PLM), phospholipid composition, and membrane fluidity. Toluene significantly decreased basal PLM (35%) in studies using [3H]methionine [( 3H]Met) as the methyl donor; this was reflected by similar decreases in phosphatidylmonomethylethanolamine (PME) (30%). No effects were observed in either PLM reactions that used [3H]adenosylmethionine [( 3H]AdoMet) as methyl donor, or AdoMet synthetase, suggesting that toluene preferentially affects PLM reactions that derive methyl groups from [3H]Met. Also, toluene decreased synaptosomal phosphatidylethanolamine (PE) (24%), the initial substrate for PLM, and the addition of PE back to PE-depleted synaptosomes restored methyltransferase activity. Agonist-stimulated PLM using norepinephrine (NE) demonstrated that agonist-receptor coupling returned PLM to control values in synaptosomes from toluene-treated rats. NE-stimulated PLM was also blocked by propranolol (PRO), suggesting a role for toluene in receptor-mediated events. Membrane fluidity studies demonstrated that in vivo administration of toluene increased the outer synaptosomal membrane fluidity, whereas in vitro administration of toluene had no effect. Our observations support a positive relationship between increased PLM activity and increased outer, not core, membrane fluidity. These data demonstrate that specific toluene-phospholipid interactions occur in synaptosomes, resulting in altered membrane composition, function and fluidity.