Suppr超能文献

用于快速Curveball算法的具有固定行和与列和的二元矩阵均匀采样的证明。

Proof of uniform sampling of binary matrices with fixed row sums and column sums for the fast Curveball algorithm.

作者信息

Carstens C J

机构信息

School of Mathematical and Geospatial Sciences, RMIT University, Melbourne, Victoria 3000, Australia.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Apr;91(4):042812. doi: 10.1103/PhysRevE.91.042812. Epub 2015 Apr 29.

Abstract

Randomization of binary matrices has become one of the most important quantitative tools in modern computational biology. The equivalent problem of generating random directed networks with fixed degree sequences has also attracted a lot of attention. However, it is very challenging to generate truly unbiased random matrices with fixed row and column sums. Strona et al. [Nat. Commun. 5, 4114 (2014)] introduce the innovative Curveball algorithm and give numerical support for the proposition that it generates truly random matrices. In this paper, we present a rigorous proof of convergence to the uniform distribution. Furthermore, we show the Curveball algorithm must include certain failed trades to ensure uniform sampling.

摘要

二元矩阵的随机化已成为现代计算生物学中最重要的定量工具之一。生成具有固定度序列的随机有向网络的等效问题也引起了广泛关注。然而,生成具有固定行和列和的真正无偏随机矩阵极具挑战性。斯特罗纳等人[《自然·通讯》5, 4114 (2014)]介绍了创新的Curveball算法,并为其生成真正随机矩阵的命题提供了数值支持。在本文中,我们给出了收敛到均匀分布的严格证明。此外,我们表明Curveball算法必须包含某些失败交易以确保均匀采样。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验