Suppr超能文献

密度中的阶跃梯度和线性梯度组合

Combining Step Gradients and Linear Gradients in Density.

机构信息

‡Department of Chemistry, Tufts University, Medford, Massachusetts 02115, United States.

出版信息

Anal Chem. 2015 Jun 16;87(12):6158-64. doi: 10.1021/acs.analchem.5b00763. Epub 2015 May 22.

Abstract

Combining aqueous multiphase systems (AMPS) and magnetic levitation (MagLev) provides a method to produce hybrid gradients in apparent density. AMPS—solutions of different polymers, salts, or surfactants that spontaneously separate into immiscible but predominantly aqueous phases—offer thermodynamically stable steps in density that can be tuned by the concentration of solutes. MagLev—the levitation of diamagnetic objects in a paramagnetic fluid within a magnetic field gradient—can be arranged to provide a near-linear gradient in effective density where the height of a levitating object above the surface of the magnet corresponds to its density; the strength of the gradient in effective density can be tuned by the choice of paramagnetic salt and its concentrations and by the strength and gradient in the magnetic field. Including paramagnetic salts (e.g., MnSO4 or MnCl2) in AMPS, and placing them in a magnetic field gradient, enables their use as media for MagLev. The potential to create large steps in density with AMPS allows separations of objects across a range of densities. The gradients produced by MagLev provide resolution over a continuous range of densities. By combining these approaches, mixtures of objects with large differences in density can be separated and analyzed simultaneously. Using MagLev to add an effective gradient in density also enables tuning the range of densities captured at an interface of an AMPS by simply changing the position of the container in the magnetic field. Further, by creating AMPS in which phases have different concentrations of paramagnetic ions, the phases can provide different resolutions in density. These results suggest that combining steps in density with gradients in density can enable new classes of separations based on density.

摘要

将水多相体系(AMPS)和磁悬浮(MagLev)相结合,提供了一种产生表观密度混合梯度的方法。AMPS—不同聚合物、盐或表面活性剂的溶液,会自动分离成不混溶但主要为水相的相—提供了热力学稳定的密度步骤,这些步骤可以通过溶质浓度来调节。MagLev—顺磁物体在磁场梯度中的顺磁流体中的悬浮—可以被安排提供有效密度的近线性梯度,其中悬浮物体距磁铁表面的高度与其密度相对应;有效密度梯度的强度可以通过选择顺磁盐及其浓度以及磁场的强度和梯度来调节。在 AMPS 中加入顺磁盐(例如 MnSO4 或 MnCl2),并将其置于磁场梯度中,可将其用作 MagLev 的介质。使用 AMPS 产生大密度阶跃的潜力允许在一系列密度范围内分离物体。MagLev 产生的梯度在连续密度范围内提供分辨率。通过结合这些方法,可以同时分离和分析具有较大密度差异的物体混合物。使用 MagLev 增加密度的有效梯度,还可以通过简单地改变容器在磁场中的位置来调节在 AMPS 界面处捕获的密度范围。此外,通过创建具有不同顺磁离子浓度的相的 AMPS,可以在密度方面提供不同的分辨率。这些结果表明,将密度阶跃与密度梯度相结合,可以实现基于密度的新分离类别。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验