Suppr超能文献

健康紊乱中的未知年龄:一种考虑其累积效应的方法及其在猫病毒相互作用中的应用。

Unknown age in health disorders: A method to account for its cumulative effect and an application to feline viruses interactions.

作者信息

Hellard Eléonore, Pontier Dominique, Siberchicot Aurélie, Sauvage Frank, Fouchet David

机构信息

Université de Lyon, Université Lyon1, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, 43 Bd du 11 novembre 1918, F-69622, Villeurbanne, France.

出版信息

Epidemics. 2015 Jun;11:48-55. doi: 10.1016/j.epidem.2015.02.004. Epub 2015 Feb 24.

Abstract

Parasite interactions have been widely evidenced experimentally but field studies remain rare. Such studies are essential to detect interactions of interest and access (co)infection probabilities but face methodological obstacles. Confounding factors can create statistical associations, i.e. false parasite interactions. Among them, host age is a crucial covariate. It influences host exposition and susceptibility to many infections, and has a mechanical effect, older individuals being more at risk because of a longer exposure time. However, age is difficult to estimate in natural populations. Hence, one should be able to deal at least with its cumulative effect. Using a SI type dynamic model, we showed that the cumulative effect of age can generate false interactions theoretically (deterministic modeling) and with a real dataset of feline viruses (stochastic modeling). The risk to wrongly conclude to an association was maximal when parasites induced long-lasting antibodies and had similar forces of infection. We then proposed a method to correct for this effect (and for other potentially confounding shared risk factors) and made it available in a new R package, Interatrix. We also applied the correction to the feline viruses. It offers a way to account for an often neglected confounding factor and should help identifying parasite interactions in the field, a necessary step towards a better understanding of their mechanisms and consequences.

摘要

寄生虫之间的相互作用已在实验中得到广泛证实,但实地研究仍然很少。此类研究对于检测感兴趣的相互作用和了解(共)感染概率至关重要,但面临方法上的障碍。混杂因素可能会产生统计关联,即虚假的寄生虫相互作用。其中,宿主年龄是一个关键的协变量。它会影响宿主对许多感染的暴露程度和易感性,并且具有机械效应,由于暴露时间更长,年龄较大的个体面临的风险更高。然而,在自然种群中很难估计年龄。因此,人们至少应该能够应对其累积效应。使用SI型动态模型,我们表明年龄的累积效应理论上(确定性建模)以及在猫病毒的真实数据集上(随机建模)都可以产生虚假相互作用。当寄生虫诱导产生持久抗体且感染力相似时,错误得出关联结论的风险最大。然后,我们提出了一种校正这种效应(以及其他潜在的混杂共享风险因素)的方法,并将其整合到一个新的R包Interatrix中。我们还将这种校正方法应用于猫病毒。它提供了一种考虑常常被忽视的混杂因素的方法,应该有助于在实地识别寄生虫相互作用,这是更好地理解其机制和后果的必要步骤。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验