Gendoo Deena Mohamad Ameen, Smirnov Petr, Lupien Mathieu, Haibe-Kains Benjamin
Bioinformatics and Computational Genomics Laboratory, Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada; Medical Biophysics Department, University of Toronto, Toronto, Ontario, Canada.
Bioinformatics and Computational Genomics Laboratory, Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada.
Genomics. 2015 Aug;106(2):96-106. doi: 10.1016/j.ygeno.2015.05.002. Epub 2015 May 12.
Molecular subtyping is instrumental towards selection of model systems for fundamental research in tumor pathogenesis, and clinical patient assessment. Medulloblastoma (MB) is a highly heterogeneous, malignant brain tumor that is the most common cause of cancer-related deaths in children. Current MB classification schemes require large sample sizes, and standard reference samples, for subtype predictions. Such approaches are impractical in clinical settings with limited tumor biopsies, and unsuitable for model system predictions where standard reference samples are unavailable. Our developed Medullo-Model To Subtype (MM2S) classifier stratifies single MB gene expression profiles without reference samples or replicates. Our pathway-centric approach facilitates subtype predictions of patient samples, and model systems including cell lines and mouse models. MM2S demonstrates >96% accuracy for patients of well-characterized normal cerebellum, WNT, or SHH subtypes, and the less-characterized Group 4 (86%) and Group 3 (78.2%). MM2S also enables classification of MB cell lines and mouse models into their human counterparts.
分子亚型分类有助于为肿瘤发病机制的基础研究和临床患者评估选择模型系统。髓母细胞瘤(MB)是一种高度异质性的恶性脑肿瘤,是儿童癌症相关死亡的最常见原因。当前的MB分类方案需要大样本量和标准参考样本才能进行亚型预测。这种方法在肿瘤活检有限的临床环境中不切实际,并且不适用于没有标准参考样本的模型系统预测。我们开发的髓母细胞瘤亚型分类模型(MM2S)分类器无需参考样本或重复样本即可对单个MB基因表达谱进行分层。我们以通路为中心的方法有助于对患者样本以及包括细胞系和小鼠模型在内的模型系统进行亚型预测。对于特征明确的正常小脑、WNT或SHH亚型患者,MM2S的准确率>96%,对于特征较少的4组(86%)和3组(78.2%)患者也是如此。MM2S还能够将MB细胞系和小鼠模型分类为与其对应的人类亚型。