Vatamanu Oana Astrid, Frandeş Mirela, Lungeanu Diana, Mihalaş Gheorghe-Ioan
Department of Functional Sciences/Medical Informatics and Biostatistics, University of Medicine and Pharmacy Timisoara, Romania.
Stud Health Technol Inform. 2015;210:75-9.
Content based image retrieval (CBIR) concerns the retrieval of similar images from image databases, using feature vectors extracted from images. These feature vectors globally define the visual content present in an image, defined by e.g., texture, colour, shape, and spatial relations between vectors. Herein, we propose the definition of feature vectors using the Local Binary Pattern (LBP) operator. A study was performed in order to determine the optimum LBP variant for the general definition of image feature vectors. The chosen LBP variant is then subsequently used to build an ultrasound image database, and a database with images obtained from Wireless Capsule Endoscopy. The image indexing process is optimized using data clustering techniques for images belonging to the same class. Finally, the proposed indexing method is compared to the classical indexing technique, which is nowadays widely used.
基于内容的图像检索(CBIR)涉及使用从图像中提取的特征向量从图像数据库中检索相似图像。这些特征向量全局地定义了图像中存在的视觉内容,例如由纹理、颜色、形状以及向量之间的空间关系定义。在此,我们提出使用局部二值模式(LBP)算子来定义特征向量。进行了一项研究以确定用于图像特征向量一般定义的最佳LBP变体。然后随后使用所选的LBP变体来构建超声图像数据库以及从无线胶囊内窥镜获得的图像的数据库。对于属于同一类别的图像,使用数据聚类技术对图像索引过程进行优化。最后,将所提出的索引方法与当今广泛使用的经典索引技术进行比较。