Matsuyama Makoto, Ohashi Yohei, Tsubota Tadashi, Yaguchi Masae, Kato Shigeki, Kobayashi Kazuto, Miyashita Yasushi
Department of Physiology, University of Tokyo School of Medicine, Bunkyo-ku, Tokyo 113-0033, Japan;
Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan;
Proc Natl Acad Sci U S A. 2015 Jun 2;112(22):E2947-56. doi: 10.1073/pnas.1423963112. Epub 2015 May 19.
Pathway-specific gene delivery is requisite for understanding complex neuronal systems in which neurons that project to different target regions are locally intermingled. However, conventional genetic tools cannot achieve simultaneous, independent gene delivery into multiple target cells with high efficiency and low cross-reactivity. In this study, we systematically screened all receptor-envelope pairs resulting from the combination of four avian sarcoma leukosis virus (ASLV) envelopes (EnvA, EnvB, EnvC, and EnvE) and five engineered avian-derived receptors (TVA950, TVB(S3), TVC, TVB(T), and DR-46TVB) in vitro. Four of the 20 pairs exhibited both high infection rates (TVA-EnvA, 99.6%; TVB(S3)-EnvB, 97.7%; TVC-EnvC, 98.2%; and DR-46TVB-EnvE, 98.8%) and low cross-reactivity (<2.5%). Next, we tested these four receptor-envelope pairs in vivo in a pathway-specific gene-transfer method. Neurons projecting into a limited somatosensory area were labeled with each receptor by retrograde gene transfer. Three of the four pairs exhibited selective transduction into thalamocortical neurons expressing the paired receptor (>98%), with no observed cross-reaction. Finally, by expressing three receptor types in a single animal, we achieved pathway-specific, differential fluorescent labeling of three thalamic neuronal populations, each projecting into different somatosensory areas. Thus, we identified three orthogonal pairs from the list of ASLV subgroups and established a new vector system that provides a simultaneous, independent, and highly specific genetic tool for transferring genes into multiple target cells in vivo. Our approach is broadly applicable to pathway-specific labeling and functional analysis of diverse neuronal systems.
对于理解复杂的神经元系统而言,特定通路的基因递送是必不可少的,在这类系统中,投射到不同靶区域的神经元在局部相互交织。然而,传统的遗传工具无法高效且低交叉反应地同时将基因独立递送至多个靶细胞。在本研究中,我们在体外系统地筛选了由四种禽肉瘤白血病病毒(ASLV)包膜(EnvA、EnvB、EnvC和EnvE)与五种工程化禽源受体(TVA950、TVB(S3)、TVC、TVB(T)和DR-46TVB)组合产生的所有受体-包膜对。20对组合中的4对表现出高感染率(TVA-EnvA,99.6%;TVB(S3)-EnvB,97.7%;TVC-EnvC,98.2%;DR-46TVB-EnvE,98.8%)和低交叉反应性(<2.5%)。接下来,我们在体内通过一种特定通路的基因转移方法测试了这四对受体-包膜对。通过逆行基因转移,将投射到有限体感区域的神经元用每种受体进行标记。四对组合中的三对表现出对表达配对受体的丘脑皮质神经元的选择性转导(>98%),未观察到交叉反应。最后,通过在单个动物中表达三种受体类型,我们实现了对三个丘脑神经元群体的特定通路、差异性荧光标记,每个群体投射到不同的体感区域。因此,我们从ASLV亚组列表中鉴定出三对正交组合,并建立了一种新的载体系统,该系统为在体内将基因转移到多个靶细胞提供了一种同时、独立且高度特异的遗传工具。我们的方法广泛适用于各种神经元系统的特定通路标记和功能分析。